Practical methods for connecting physical objects. 3rd Edition

Making yd

Learn by
Discovery

Thmgs Talk

78 MAKING THINGS TALK

‘ - Project 4
-

Making Your Own Arduino-Compatible Board

There are times when you want to use
more than one microcontroller in a project,
or when you just need a controller with one
or two 170 pins and don't want to spend
the money on a full-featured microcon-
troller. There may also be times when it's
simpler to have multiple processors each
dedicated to one task. This is when Atmel’s
ATtiny microcontrollers come in handy.
They're small, they cost only a few dollars,
and you can program them using another
Arduino-compatible microcontroller, using
the SPI synchronous serial protocol.

Microcontroller boards like the MKR100O0, the 101, and
even the Uno have a lot more parts on them besides the
microcontroller itself. Most have a reset button and a
clock crystal or resonator to supply the processor with a
precise timing pulse. Many have a voltage regulator that
can take a variable input voltage and supply a constant
output voltage for the controller. This allows you to plug
in a variety of power sources to the DC power jack, for
example. Some have a USB-to-serial adapter, as explained
earlier. Others have additional sensors or radios on board,
like the MKR1000 and the 101.

Without all these features, the microcontroller alone can
be quite inexpensive. Unfortunately, most microcontrollers
these days are too small to work with on a breadboard,
but it is still possible to get some of Atmel's AVR 8-bit
microcontollers in a dual inline package (DIP) that can fit
into a breadboard. The ATmega328P, which is the control-
ler at the heart of the Uno, is one of these. Two others, the
ATtiny84 and ATtiny85, are perhaps the most useful for
the size and cost. Their pin diagrams are shown in Figure
2-18. They each have a few GPIO pins that can be used as
analog or digital input, and a few PWM pins as well. They
can't do everything the others can, but they can do the
basics of digital input and output, analog input, and pseu-
do-analog output using PWM. They don’t have a UART on

MATERIALS

» 1 Arduino-compatible microcontroller
» (Uno or MKR100O shown)
» Features used: UART, SPI

» 1 ATtiny84 microcontroller

» 1 solderless breadboard

» Jumper wires
» 1 RGB LED, common cathode

» 1220-ohm resistor

Indent indicalos Lop of package
Dot indicates pin 1

[¢] _/
Reset Vin
3 (analog in 3) — ATHiny85 2 (analog in 1. SCK)
1(PWM, MISO)

4 (analog in 2)

Ground —— 0 (PWM, ARef, MOSI)
Dot indicates pin | Indent indicates top of package
o \ J
Vin GND
10 — 0 (Analog in O, ARef)
9 — 1(Analoginl)
Reset ATtiny84 2 (Analog in 2)
8 (PWM) —— —— 3 (Analogin 3)

4 (Analog in 4, SCK)
— 5 (Analog in 5, PWM, MISO)

7 (PWM, Analog in 7) —
6(MOSI PWM, Analog in 6)

Figure 2-18
ATtiny84 and 85-pin diagrams.

board, but they can manage asynchronous serial commu-
nication using the SoftwareSerial library. When combined
with a more fully featured processor, they are quite useful.
This project shows you how you can reproduce the LED

lamp from the first project on a controller that costs less
than four dollars.

Arduino as ISP

When you get an Uno or any Uno-compatible board, the
microcontroller already has a program on it called a boot-
loacler. The bootloader is a tiny program that stays on the

HE SIMPLEST NETWORK 79

~{ll2 Introducing Serial Peripheral Interface (SPI)

In-creuit serial programming uses a form of synchronous
serial communication called Serial Peripheral Interface, or
SPI. SPI, along with another synchronous serial protocol,
Inter-Integrated Circuit or 12C (sometimes called Two-Wire
Interface, or TWI), are two of the most common synchro-
nous serial protocols you'll encounter. You'll see SP| used
for other devices, like the WiFi radio on the MKR1000, or
for communication with SD memory cards, as well as
many sensors.

Synchronous serial protocols all feature a controlling device
that generates a regular pulse, or clock signal, on one pin
while exchanging data on every clock pulse. The advantage
of a synchronous serial protocol is that it's a bus: you can
have several devices sharing the same physical connections
to one master controller.

SPI connections have three or four connections between
the controlling device (or master device) and the peripheral
device (or slave), as follows:

+ Clock (SCK): The pin that the master pulses regularly.

» Master Out, Slave In (MOSI): The master device sends a
bit of data to the slave on this line every clock pulse.

» Master In, Slave Out (MISO): The slave device sends a bit
of data to the master on this line every clock pulse.

« Slave Select (SS) or Chip Select (CS): Because several
slave devices can share the same bus, each has a unique
connection to the master. The master sets this pin low
to address this particular slave device. If the master's
not talking to a given slave, it will set the slave’s select
pin high.

If the slave doesn’t need to send any data to the master,
there will be no MISO pin.

Since SPI is the standard method for programming AVR
controllers, most boards using those controllers, including
the Uno and earlier Arduino models, all have an ICSP header
that breaks out the SPI pins. It looks like this:

White dot indicates pin 1

1: MISO 2:+Vin
3:SCK 4: MOSI
5: Reset 6: Ground

If there's an ICSP header on your board, you can count on
the pins having this arrangement. Different microcontrollers
break the SPI functions to different pins, however. Here are
the SPI pin configurations for the Uno, 101, and MKR1000:

Function Uno 1091 MKR 1665
MOSI 11 or ICSPa | 105P4 5
MISO 12 or ICSP1 ICSP1
Clock 13 or ICSP3 ICSP3 9
Chip Select 16 10 jser choice
Master Slave 1
Chip Select 1 cs
MOSI MOSI
MISO MISO
Clock CLK
Chip Select 2
Slave 2
CS
MOSI
MISO
CLK

80 MAKING THINGS TALK

microcontroller at all times. Its only job is to read byles in
through the UART. If those bytes are formaltted as a new
program, the bootloader writes them to the rest of the
controller's program memory. This is why you can upload
a new program to your Uno via the USB serial port.

Microcontrollers don't normally come with a bootloader
on board. Instead, they are programmed with a separate
piece of hardware called an in-circuit serial programmer
(ICSP or ISP), using the SPI synchronous serial protocol.
The programmer sends a clock signal to the microcon-
troller, and every time the clock pulses, the microcon-
troller reads another bit of data and writes it to program
memory. When the whole program is written to memory
and the controller is reset, the program runs. Program-
mers like Atmel's AVRISP mkll and Adafruit's USBTinyISP
are popular AVR programmers. Different microcontroller
architectures usually require different programmers.

:

10T

INT 901viy [l 13009

4 skelch included with the Arduino IDE examples
armrner

[here'
that will turn most any board into an ICSP progr
Cliclk on File—Examples—Arduinol SP, and upload it to
the board that you want to use as a programmer. Fhen
connect an ATtiny84 to the board as shown in Figure 2-19

Before you can program the ATtiny84, you'll need to add
its board definition to the IDE. As you did in Chapter 1 (see
the "Boards Manager" sidebar), click on Preferences and
look for the Additional Boards Manager URLs box. Enter
the following URL in the box: http //raw.githubusercon
lenl.com/damell|5/altmy/lde—].6.x—ima|(iz manager/
package,clamell|s_attmy_mdox.|50| 1. Then click OK and
restart the IDE. When you restart, you'll find the ATtiny
boards in the Tools Boards menu. For other processors
in the AVR line, the process is the same. For example,
the ATmega328P uses the Uno board definition. The
ATmega2560 uses the Mega board definition.

101/Uno Breadboard view

+3.3V

Vin

To programmer Chip Select pin

Reset ATtiny84

To programmer MOSI pin

GND

Schematic view
Only connected pins are shown.

To programmer SCK pin

MKR1000 Breadboard view

Figure 2-19

Programming an ATtiny84 from
an Arduino-compatible board.
The half-circle at the top of

the ATtiny indicates the top of
the component, and the indent
indicates physical pin number
1. This is standard on dual-inline
package (DIP) components.

To programmer MISO pin

THE SIMPLEST NETWORK 81

In order to program the ATtiny, you need to set the micro-
controller's basic configurations. These are stored in 3
bytes of permanent memory and are called fuses. The fuses
configure the controller's clock speed, running voltage, and
so forth. In the Boards menu, set the ATtiny85 as follows:

« Board: ATtiny

+ Processor: ATtiny84

+ Clock: 8MHz (internal)

+ Port: whatever port your programmer board is using

Click on the Tools Programmer menu and choose
“Arduino as ISP This tells the IDE to use your program-
mer board as the programmer for the ATtiny.

Next choose Burn Bootloader from the Boards menu. This
will set the fuses. When it's done, you'll see the message
“Done Burning Bootloader” in the console pane. Now
you're ready to put a sketch on the ATtiny84.

You can see that the clock is set to 8MHz (internal). This
means that the processor will use an internal circuit to

keep its timing. With the ATtiny set like this, you need only
a connection to voltage (between +3 and +5V) and ground
and a pullup resistor to voltage on the reset pin to make it
work. Try uploading the Blink sketch to it. First change the
LED pin number from 13 to 6, then click Upload Using Pro-
grammer. The IDE will use your programmer board as the
in-circuit serial programmer to program the ATtiny. Add
an LED to digital 170 pin 6 and you should see the LED
blinking when the ATtiny microcontroller is powered.

SoftwareSerial and ATtiny Type
Brighter

The ATtiny has all the capabilities you need to run either
of the projects in this chapter, so let's re-create the first,

Type Brighter.

Connect the RGB LED to digital I/0 pins 6 through 8 of
the ATtiny84. These pins can be used for PWM, just like
the PWM pins of the 101 and MKR100O as you saw earlier.
Load the Serial RGB LED controller sketch from the first
project, and make the following changes:

Add the following two
lines to the beginning

of the sketch. These lines include and

make an instance of the SoftwareSerial

library, which allows you to send and

receive serial data on any two GPIO

pins. You'll use pins O and 1.

#include <SoftwareSerial.h>

// include the SoftwareSerial library

SoftwareSerial swSerial(Q, 1); // RX, TX

// constants to hold the output pin numbers
const int redPin = 8;
const int greenPin = 7;

const int bluePin = 6;

Change the LED pin numbers as
shown here as well.

Once you've added these lines, change every instance of
serial in your current Arduino sketch to swserial. The Soft-
wareSerial library has the same print(), printin(), read(),
write(), and available() commands as the main Serial

library.

Upload the changed sketch to your ATtiny84 using your
programmer board just like you did with the Blink sketch.
Then disconnect the ATtiny84 from the breadboard,

and connect it to a USB-to-serial adapter as shown in
Figure 2-20. The adapter's TX goes to pin 0 and RX goes

to pinl. In this case, you'll power the ATtiny84 from the
adapter, so connect Vin and ground to the microcon-
troller's Vin and ground as well. Open CoolTerm or the
Serial Monitor to your adapter and type commands just
like you did in the first project, for example:

r5g3b7
The LED should change just like it did in the first project.

It's the same project, but much simpler and less expensive!
X

N2 MAKING TN TAL I

¢ alln @ . .
. . .
P . [.
o6 . . .
eef| ¢ ¢ ¢ ¢ lee
ool . . L) ¢ i|lge
o ell ¢l
| . . L] ‘.
| & . "

§

I
e
ee
I

l\la — |

ssssssssssassasassan

T R EEEER
TR LR Y

.......QQ.‘............
A aassassaasassanrans

asassesnsassaana

LS fe
S8l sesas Masase |3

Schematic view
Only connected ping are shown,

|‘4~ . Altingsa
= ,(H’)-“._f /
o & Vs 0
< ‘(H)»_l_. GND
[T

A microcontroller's Universal Asynchronous Receiver-
Transmitter (or UART, labeled RX and TX) allows it to send
and recelve serlal data rellably, no matter what your code Is
doling, because the UART listens for serlal all the time. What

nous serlal device to your Arduino? Some microcontrollers
have multiple UARTs, The Arduino Mega 2560 has four, for
oxample, But you may not need all that a Mega has to offer
Just to get another serlal port, SoftwareSerlal allows you to
use two digital pins as a “fake" UART. The library

~@l5 More Serial Ports: Software Serial

do you do when you need to attach more than one asynchro-

Igure 2-20
T:m Brightar project on an / tiny#4a. The UOE l‘", werial ','0(jerter
it supplying power for the circuit via USHE from the {’(:(:’II,M‘)
computer, The ATtiny#Aa and the | £l can operate at +3.5 or ‘,ll/
w0 It dossn't matter which the adapter 15 supplying. The 10-vilohrr
pullup resistor on the reset pin keeps the rnnf,mcf,rnmllcir from ’
ranotting spontaneously, by reeping the reset pin high. To reset the

micreontroller, connect the reset pin to ground

Breadboard view

J

z

7
{ RTS
L (o] vin

can listen for incoming serial on those pins, and transmit as |

well. Because it's not a dedicated hardware UART, Software-
Serial Isn't as reliable as hardware serial at very high or
very low speeds, though it does well from 4800bps through
57.6kbps. When you're using limited controllers like the
ATtiny processors, It's handy. It can also be useful on the
Uno and other processors that have only one UART, when
you want to connect to another asynchronous serial device

and still want to use the main UART for communication with
your personal computer.
X

‘ ‘ Although many projects work fine with just
one microcontroller, there are cases where
it's helpful to have two or more with different

capabilities. For example, the ESP8266 controller, which

you'll see in later chapters, is great at network commu-
nications via WiFi, but it's only got one analog input, and
that input has only a 1-volt range. For a project that needs
multiple analog inputs, like Monski Pong, the ESP8266
wouldn't be much good on its own. But it could be
connected serially to an ATtiny84 or ATtiny85 to handle
the analog input.

Being able to expand the number of inputs and outputs
isn't the only reason you might want two controllers.
You might have a project in which you need very precise
timing of an output device at the same time as you need
to make a complex network exchange. By separating the
tasks to two processors, you can simplify the program-
ming by splitting it into two programs.

The Arduino IDE can program a number of controllers in
the AVR microcontroller family using in-circuit serial pro-
gramming, simply by selecting the right board from the
Boards menu and burning the bootloader. Here's what it
can do with the built-in board settings:

ATmega328P - bootload using Uno board setting

« ATMegal68 - bootload using Diecimila or Duemilanove
« ATMega8 - bootload using NG or older

ATMega2560 - bootload using Mega2560
ATmega32U4 - bootload using Micro

Figure 2-21
ATmega328 on a breadboard with a
USB-to-serial adapter.

Only connected pins are shown.

THE SIMPLEST NETWORK

x©
w

Using the board definitions from this project, it can also

program these:

+ ATtiny84
« ATtiny44
« ATtiny 85
« ATtiny45

Of these, the ATtinys and the ATmega328P are probably
the most useful. The former are small and very inexpen-
sive, and the latter is the same processor used in the
Uno, so it's compatible with many existing examples on
the web.

Figure 2-21 shows the circuit and components necessary
to make your own Uno-compatble breadboard circuit. It's
bootloaded just like the ATtiny controllers: connect the
SPI pins to your programmer board, choose “Uno” as the
board type, then burn the bootloader.

Once you've put the bootloader on the controller, you
can program it over the USB-to-serial converter, but
you'll need to hit the reset button right before upload
each time.

It also includes a 5-volt voltage regulator and DC power
jack so that you can power it from a 9-12V DC power
source. The full pin diagram of the ATMega328P can be
found at www.arduino.cc/en/Hacking/PinMappingl68.
X

Schematic view oND
“I:T —4 CTS
— 3 Vce S5
USB-to-sena
TX Adapte
RX
il RTS
7805
Voltage Reg.
In Out +5V
+9-12V — =
10KQ 1
Vee
—_— Reset
0 (RX)
- 1(TX) ATMegad 8P
F—— crystal
b crystal
GND

Breadboard view

84 MAKING THINGS TALK

“ Conclusion

The projects in this chapter have covered a number of ideas that are central to all
networked data communication. First, remember that data communication is based on
a layered series of agreements, starting with the physical layer; then the electrical, the
logical, the data layers; and finally, the application layer. Keep these layers in mind as
you design and troubleshoot your projects, and you'll find it’s easier to isolate problems.

Second, remember that serial data can be sent either as
ASCll-encoded or as raw binary values, and which you
choose to use depends on both the capabilities and limi-
tations of all the connected devices. It might not be wise
to send raw binary data, for example, if the modems or
the software environments you program in are optimized
for ASCII data transfer.

Third, when you think about your project, think about the
messages that need to be exchanged, and come up with
a data protocol that adequately describes all the infor-
mation you need to send. This is your data packet. You
might want to add header bytes, separators, or tail bytes
to make reading the sequence easier.

Fourth, consider the flow of data, and look for ways
to ensure a smooth flow with as little overflowing of
buffers or waiting for data as possible. A simple call-
and-response approach can make data flow much
smoother.

Fifth, get to know the communications devices that

link the objects at the end of your connection, whether
they're protocol adapters like the USB-to-serial adapter
or radios like the Bluefruit. Understand their address-
ing schemes and data protocols so that you can factor
their strengths and limitations into your planning, and
eliminate those parts that make your life more difficult.

Finally, think about your projects in terms of distributed
computing rather than a single computer. Now that you
know how to program both high-end microcontroller
modules and simple microcontrollers like the ATtiny84

or ATtiny85, and how to communicate with them using
asynchronous serial communication, you can assign each
task in your project to a separate controller if you want.

With a little planning, you can take the computing
needs of your project, and distribute them across many
different computers. This is the real power of microcon-
trollers and serial communication.

X

" The JitterBox by Gabriel Barcia-Colombo

The JitterBox is an interactive video Jukebox created from a vintage 1940s radio restored to working condition. It features a tiny video-pro-
jected dancer who shakes and shimmies to the music. The viewer can tune the radio and the dancer will move in time with the tunes. The
JitterBox uses serial communication from an embedded potentiometer tuner—which is connected to an Arduino microcontroller—in order
to select from a range of vintage 1940s songs. These songs are linked to video clips and played back out of a digital projector.

The dancer trapped In the JitterBox is Ryan Myers.

