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Abstract

Sis is an interactive tool for synthesis andoptimization of sequential circuits. Given a state transition table, a
signal transition graph, oralogic-level description of asequentialcircuit, it produces anoptimized net-list in thetarget
technology while preserving thesequential input-outputbehavior. Many different programs and algorithms havebeen
integrated intosis, allowing theuser tochoose among avariety of techniques ateach stage of theprocess. It is built
on topof Misn [5] andincludes all(combinational) optimization techniques therein aswell asmanyenhancements,
sis serves as both a framework within which various algorithms can be tested and compared, and as a tool for
automatic synthesis and optimization of sequential circuits. This paper provides an overview of SIS. The first part
contains descriptions of the inputspecification, STG(state transition graph) manipulation, new logic optimization
andverification algorithms, ASTG (asynchronous signal transition graph) manipulation, and synthesis for PGA's
(programmable gate arrays). Thesecond part contains atutorial example illustrating thedesign process using SIS.

1 Introduction

The sis synthesis system is specifically targeted for sequential circuits and supports adesign methodology that allows
the designer to search a larger solution space than was previously possible. In current practice the synthesis of
sequential circuits proceeds much like synthesis of combinational circuits: sequential circuits are divided into purely
combinational blocks and registers. Combinational optimization techniques are applied to the combinational logic
blocks, which are later reconnected to the registers to form a single circuit. This limits the optimization by fixing
the register positions and optimizing logic only within combinational blocks without exploiting signal dependencies
across register boundaries. Verification techniques are limited toverifying machines with the same encoding. Finally,
it iscumbersome toseparate the circuit into logic and registers only toreconstruct it later. In this paper, a sequential
circuit design methodology is described; it is implemented through a system that employs state-of-the-art synthesis
and optimization techniques. This approach is illustrated with an example demonstrating theusefulness of these new
techniques and theflexibility thedesigner can exploit during thesynthesis process.

Many algorithms have been published for various stages of sequential synthesis. For synchronous circuits, these
include methods for state assignment [24, 58], state minimization [17, 31], testing [16], retiming [22], technology
mapping [33], verification [6, 10], timing analysis, and optimization across register boundaries [11, 25, 28, 29].
For asynchronous circuits, these include methods for hazard-free synthesis [20, 32]. However, no comprehensive
evaluation of the algorithms and nocomplete synthesis system inwhich all of these algorithms are employed has been
reported todate. A complete sequential circuit synthesis system isneeded, both as a framework for implementing and
evaluating newalgorithms, and as a tool for automatic synthesis and optimization of sequential circuits.
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Figure 1: A Design is Specified as an ASTG, STG, or Logic

sis is an interactive tool like misii, but for sequential circuit synthesis and optimization. It is built on top of misii
and replaces it in the Octtools [12], the Berkeley synthesis tool set based on the Oct database. While misii operated
on only combinational circuits, sis handles both combinationaland sequential circuits. In the Octtools environment,
a behavioraldescription of combinational logic can be given in a subset of the BDS language(the BDS languagewas
developed at DEC [1]). The program bdsyn [45] is used to translatethis description into a set of logic equations, and
then bdnet is used to connect combinational logic and registers and create an Oct description file. Alternately, the
startingpoint can be either a state transition table and sis is used to invoke state assignment programs to create the
initiallogic implementation, or a signal transition graph and sis is used to createa hazard-free logic implementation,
sis is then used for optimization and technology mapping; placement and routing tools in the Octtools produce a
symbolic layout for the circuit.

The sis environment is similar to misii: optimization is done for area, performance, and testability. System-level
timing constraints can be specified for the I/O pins. External"don't care" conditions, expressing given degrees of
freedom in the logic equations, can be supplied and used in the optimization. Synthesis proceeds in several phases:
state minimization and state assignment, global areaminimization and performance optimization, local optimization,
and technology mapping, sis is interactive, but as in misii scripts are provided to automate the process and guide the
optimization steps.

In the sequel, the main new components of sis will be described (i.e. those algorithms and operations not available
in misii), including an input intermediate format for sequentialcircuits. This is followed by an example illustratingthe
use of sis in the design process.

2 Design Specification

A sequential circuit can be input to sis in several ways (see Figure 1), allowing sis to be used at various stages of the
design process. The two most common entry points area net-list of gates and a finite-state machine in state-transition-
table form. Other methods of input are by reading from the Oct database, and through a sequential circuit net-list
called slif (Stanford Logic InterchangeFormat) [15]. Forasynchronouscircuits, the input is a signal transitiongraph
[8].



2.1 Logic Implementation (Netlist)

The net-listdescriptionisgiven inextendedblif (Berkeley LogicInterchangeFormat)whichconsistsof interconnected
single-outputcombinational gates and latches (see Appendix A for a description). The blif format, used in Misii,
has been augmented to allow the specification of latches and controlling clocks. The latches are simple generic delay
elements; in the technology-mapping phase they are mapped to actual latches in the library. Additionally, the BLIF
format accepts user-specified don't care conditions. Designs can be described hierarchically although currently the
hierarchy information is notretained in the internal datastructure resulting in a flatnetlist1.

2.2 State Transition Graph (STG)

A state transition table for a finite-state machine can be specified with the Kiss [26] format, used extensively in state
assignment and state minimization programs. Each state is symbolic; the transition table indicates the next symbolic
state and output bit-vector given a current state and input bit-vector. External don't care conditions are indicated by
a missing transition (i.e., a present-state/inputcombinationthat has no specifiednext-state/output) or by a '-' in an
output bit (indicating that for that present-state/input combination that particular output can be either 0 or 1).

2.3 Internal Representation of the Logic and the STG

Internally, the blif file for a logic-level specificationis represented by two Boolean networks, a care network, and a
don't carenetwork representing theexternal don't cares. Eachnetwork is a DAG,whereeachnoderepresents either
a primary input x,-, a primary output zit or an intermediatesignal yi. Each y, has an associated function F{,and an
edge connects node i to node j if the functionat node j dependsexplicitlyon the signal i. The don't care network has
the samenumber of outputsas the carenetwork: an outputof *V in the don't care network underan inputcondition
indicates for that input, either '0' or '1* is allowed for that output in the care network. Simultaneously, the Kiss
specification (if present) is storedas an STG(state transition graph) structure. The network and STGrepresentations
canbe givensimultaneously byembedding theKiss filein theblif specification, sis provides routinesfor interactively
manipulating both representations of a singlecircuitas described in Sections 3.1 and 3.2. An exampleof an STGand
a logic implementation is shownin Figure2; the corresponding blif specification with an embeddedstate table is on
the right

With two internal representations for a singlesynchronous circuit (STG and logic), it is necessary to check the
consistency of the tworepresentations. This is donewiththestg-covercommand, whichdoesa symbolic simulation
of thelogic implementation foreach edge of theSTG toensure thatthebehavior specified bytheedgeis implemented
bythelogic (theSTG "covers" thelogic implementation). This command should beinvoked if thetworepresentations
are initially given for a circuit.

2.4 Signal Transition Graph (ASTG)

Thesignal transition graph is an event-based specification forasynchronous circuits. It is composed of transitions,
representing changes of values of input or output signals of the specified circuit, andplaces, representing pre- and
post-conditions of thetransitions. Aplace can bemarked with one or more tokens, meaning that thecorresponding
condition holds in thecircuit. When allthepre-conditions ofa transition aremarked, thetransition mayfire (meaning
that the corresponding signal changes value), and the tokens are removed from its pre-conditions and added to its
post-conditions. Hence a signal transition graph specifies the behavior bothof an asynchronous circuit and of the
environment where it operates. Thecausality relations described by places joining pairsof transitions represent how
the circuit and its environmentcan react to signal transitions.

For example, see Figure 3(a),which represents a fragment of a signal transition graph specification. Places are
shown as double circles, transitions are shown as simple circles, and places withexactly one predecessor and one
successor (implicit places) areomitted. Transitions 6f and6J aretwodistinct falling transitions of signal 6. Initially,
place p\ is marked. Either a+ or 6f can fire, butnotboth, since firing oneof them removes the token from the

1A new program called HSIS (hierarchical SIS) iscurrently under development for synthesis ofhierarchicalnetlists.
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Figure 3: A Signal Transition Graph, its text file representation and its State Graph



predecessor of the other one(a+ and 6f are in conflict). If a+ fires, signal a changes value from 0 to 1. If 6f
fires, signal bchanges value from 1 to0. Standard digital circuits are deterministic, so thiskindof non-deterministic
choice between firing transition is allowed only for input signals (it allows a more abstract modeling of the circuit
environment). If a+ fires, it marks the implicit places between a+ and 6J and between a+ and c+. So a+ causes
transitions 6J and c+ tobeenabled (a+ and 6J are ordered). Transitions 6J and c+ do not share apre-condition, so
they can fire inany order (6j and c+ are concurrent). When both have fired, d+ becomes enabled, because both its
pre-conditions are marked, and so on.

Note that the transitions in this fragment allow us to infer a value for each signal in each distinct marking of the
signal transition graph. For example, in theinitial marking a = 0 (because its first transition, a+, willberising), 6=1
(because its first transition, either frf or 6j, will be falling), andsimilarly c = 0 andd = 0. The valuelabel attached
to each marking must be consistent across different firing sequences of the signal transition graph. For example, when
Pi is marked,the value for d is always0, independent of whetherwe fired d~ or b~ (in the lattercase the value for d
is the same as when p\ is marked, since no transition of d fires between p\ and pi)-

The existence of such a consistent labeling of each marking with signal values is the key for the correctness of a
signal transition graph, together with three other properties:

• liveness: for every transition, from every marking that can be reached from the initial one, we must be able to
reach a marking where the transition is enabled (no deadlocks and no "operating cycles" that cannot be reached
from each other).

• safeness: no more than one token can be presentin a place in any reachable marking.

• free-choice: if a placehasmore thanone successor (p\ in the example), then it must be the onlypredecessor of
those transitions.

Furthermore a signaltransition graph must be pure,i.e. no placecanbe both a predecessor anda successor of the same
transition, andplace-simple,i.e. no two placescan have exactly the same predecessors and successors.

A state machine (SM) is a signal transition graph where each transition has exactly one predecessor and one
successor place(no concurrency). A markedgraph(MG) is a signaltransition graph where eachplacehasexactly one
predecessor andone successor transition (no choice). These two classes of signaltransition graphs areuseful because
somesynthesis algorithms canbe usedonly, forexample, on marked graphs, andsomeanalysis algorithms decompose
a general signaltransition graph into statemachinecomponents or into markedgraph components(see Section 3.3).

A signal transition graph can be represented as directed graph in a text file and read intoSis with the read_astg
command (an example is shownin Figure 3(b)). The first three lines(.model,. inputs and . outputs) havethe
same meaning as in the blif format. In addition, the keyword . internal can be used to describe signals thatare
notvisibleto thecircuit environment, e.g. state signals. Everything aftera"#" signis treated as a comment

Each lineafter . graph describes a setof graph edges. For example pi a+ b-/l describes the pair of edges
between p\ and a+ and 6f respectively. The optional .marking line describes the set of initially marked places (a
blank-separated list surrounded bybraces). Implicit places, e.g. the place between d+ and b^, can bedenoted inthe
initial marking by writing its predecessor and successor transitions between angle brackets, e.g. <a+, b- /2>.

Inaddition to input, output and internal transitions, thesignal transition graph model also allows dummy signals.
Dummy signals, denoted by thekeyword . dummy, justact as "placeholders" or"synchronizers" and do notrepresent
any actual circuit signal (sotheir transitions are notallowed tohave a"+" or"-" sign). Dummy signals are veryuseful,
for example, in transforming anasynchronous finite state machine intoa signal transition graph by direct translation
[9]. In this translation oneexplicit place represents each state, and it has onedummy transition for each output edge,
followed by a setof transitions representing input signal changes2, followed by state signal changes, followed by
outputsignal changes, followed by another dummy transition, followed by the place corresponding to the next state.
Notethattheinputtransitions mustprecede thestate and outputtransitions in order to implythecorrect deterministic
behavior, because the dummy transitions haveno effect on theobservable signals. In order forthis direct translation
to be possible, every finite state machine state mustbe entered witha single setof values of inputand outputsignals,

2Ifmore than one input signal changes value, this situation could not be represented, in general, byafree-choice signal transition graph without
dummy transitions.
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Figure 4: An asynchronous finite state machine and its signal transition graph specification

i.e. it must be a Moore-type machine, and each edge entering the state must have exactly the same input signal labels
(this is often the case, for example, with classical "primitive flow tables", see [55]).

Suppose that a finite state machine, whose fragment appears in Figure 4(a), has a state si with code 00, where all
input and output signals signals have the value 0. If inputs a and 6 rise, then it makes a transition to a state s2, with
code 01, where outputs d and e have value 1. Otherwise, if input c rises, it makes a transitionto state S3,with code 11,
where no output change occurs.

The finite state machine fragment can be represented by the following signal transition graph fragment (place pi
corresponds to state «i, place p2 to state s2, and place p3 to state S3), shown in Figure 4(b):

.inputs a b c ...

.outputs d e, ... v,
# state signals

.internal xO xl

.dummy eps

.graph

# state si: two transitions

pi eps/1 eps/2

# input change
eps/1 a+ b+
# state change 00 -> 01
a+ x0+

b+ x0+

# output change

x0+ d+ e+

# next state is s2

d+ eps/3
e+ eps/3
eps/3 p2

# input change
eps/2 c+

# state change 00 -> 11
c+ x0+ xl+



# no output change

# next state is s3

x0+ eps/4
xl+ eps/4
eps/4 p3

3 Part I: The SIS Synthesis and Optimization System

sis contains many new operations and algorithms, and it is the combination of these within a uniform framework
that allows the designer to explore a large design space. Some of these are enhancements to the combinational
techniques previouslyemployed in misii. These includeimprovementsto performanceoptimization(bothrestructuring
and technology mapping), storageand use of externaldon't cares, improved node minimization, and faster divisor
extraction. Inaddition, new sequential techniques areincluded: aninterface to stateminimizationandstateassignment
programs, retiming, sequential circuit optimization algorithms, finite-state machine verification, technology mapping
for sequential circuits,and synthesis of asynchronous designs.

3.1 STG Manipulations

3.1.1 State Minimization

A state transition graph (STG) contains a collection of symbolic states and transitions between them. Thedegrees of
freedom in thisrepresentation, or don'tcares, are either unspecified transitions orexplicit output don'tcares. These
degrees of freedom, along withthenotion that two states are equivalent if theyproduce equivalent output sequences
given equivalent input sequences, can beexploited to produce amachine with fewer states. This usually translates to
asmaller logic implementation. Such a technique is called stateminimization and has been studied extensively (e.g.
[17,31]). For completely specified machines theproblem can besolved inpolynomial time, while inthemore general
caseof incompletely specifiedmachines the problemis NP hard.

In sis, state minimization has been implemented to allow the userto choose among various state minimization
programs. No single state minimization algorithm has been integrated, but rather, the user can choose among state
minimization programs, distributed with sis,orother programs that conform toan I/O specification designed for state
minimization programs. Programs that conform tothe specification can beexecuted from the sis shell. It has simple
requirements, e.g. that the program use the Kiss format for input and output. For example, theuser may invoke the
stamina [17] program, aheuristic state minimizer for incompletely specified machines distributed withSIS, as follows:

sis> state_minimize stamina -s 1

In this case, stamina is used with its option *-s V to perform state minimization on the current STG. When the
command iscompleted, theoriginal STG isreplaced by theone computed bystamina with (possibly) fewer states.

3.1.2 State Assignment

State assignment provides themapping from an STG toanetlist. State assignment programs start with astate transition
table and compute optimal binary codes for each symbolic state. These binary codes are used tocreate a logic-level
implementation bysubstituting the binary codes for the symbolic states and creating alatch for each bitof the binary
code.

In sis, the state assignment mechanism is similar to state minimization: theuser is free to choose among state
assignment programs, provided those programs conform toa simple specification (in this case, the input is kiss and
the outputis BUF). A call to a stateassignment program, suchas

sis> state_assign nova -e ih



will perform optimal state assignment on the STG and return a corresponding logic implementation. Two state
assignment programs, jedi[24] andnova [58] are distributed with sis. jedi is a general symbolicencoding program
(i.e., forencodingbothinputsandoutputs)thatcanbe used forthe morespecific stateencodingproblem; it is targeted
for multi-level implementations, nova is a stateassignmentprogram targeted for PLA-based finite-state machines; it
produces good results for multi-level implementations as well.

After state assignment there may be unused state codes, and from the kiss specification, unspecified transitions
and output don't cares. These are external don't cares for the resulting logic, and can be specified in the blif file that
is returned by the state assignment program, as is done with nova. These don't care conditions will be stored and
automatically used in some subsequent optimization algorithms, such as full-simplify (see Section 3.2.1).

3.13 STG Extraction

STG extraction is the inverse of state assignment. Given a logic-level implementation, the state transition graph can
be extracted from the logic for subsequent state minimization or state assignment. This provides a way ofre-encoding
the machine for a possibly more efficient implementation. The STG extractionalgorithm involves forward simulation
and backtracking to find all states reachable from the initial state. Alternately, all 2n states can be extracted, where
n is the number of latches. The resulting STG is completely specified because it is derived from the implementation
(which is completely specified by definition) and because the external don't cares in the don't care network are not
used during the extraction. Thus to minimize the size of the STG the don't cares should be given explicitly for the
STG representation. The stg_extract operation should be used with caution as the STG may be too large to extract;
the STG is in effect a two-level (symbolic) sum-of-products form.

3.2 Netlist Manipulations

sis containsmisii andall the combinationaloptimization techniquestherein. This includes the globalareaminimization
strategy (iteratively extract andresubstitute common sub-expressions,eliminate the least useful factors),combinational
speed-uptechniquesbasedon localrestructuring,localoptimization(node factoring anddecomposition, two-level logic
minimization using local don't careconditions), and technology mapping for areaor performanceoptimization. Some
ofthese techniques have been improved significantlyover the lastavailableversionofmisii. In addition,new techniques
for both combinational and sequential circuits have been introduced.

3.2.1 Combinational Optimization

Node Simplification

The logic function at a node is simplified in misii using the simplify command which uses the two-level logic
minimizer espresso [4]. The objective of a general two-level logic minimizer is to find a logic representation with
a minimal number of implicantsand literals while preserving the functionality. There are several approaches to this
problem. In espresso, the offset is generated to determinewhethera given cube is an implicant in the function. The
input usually contains a cover for the onset and a cover for the don't care set A cover for the offset is generated
from the input using a complement algorithm basedon the UnateRecursive Paradigm [4]. The number of cubes in
the offset can grow exponentiallywith the numberof input variables; hence the offset generation couldbe quite time
consuming. In the context of a multi-level network, node functions with many cubes in the offset and don't careset
happenquite often, but the initialcoverof the onset is usuallysmall,andboth the initialcover andthe don't carecover
mainly consist of primes.

To overcome the problemof generating huge offsets, a subsetof the offset called the reducedoffset is used [27].
The reducedoffset for a cube is never larger thanthe entireoffset of the functionand in practice hasbeen found to be
much smaller. The reduced offset can be used in the same way as the full offset for the expansion of a cube and no
quality is lost. The use of the reducedoffset speeds up the node simplification; however, if the size of don't care set
is too large, the computation of reduced offsets is not possible either. As a result, filters [40] must be introduced to
keep the don't care size reasonablysmall. The filters arechosen heuristicallywith the goal that the quality of the node
simplification is not reduced significantly.
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Figure 5: Node Simplification

To perform node simplification on a node in a multi-level network, an appropriate don't care set must first be
generated. In misii, subsets of the satisfiability andobservability don't care sets(SDCandODCrespectively, see [2])
are used. The SDC captures conditions which can never happen in the network and hence are don't cares (i.e. if
yi = xu then yixx is a don't care because y\ and xi will never bothbe 1). The ODCcaptures changes whichmay
occur withoutaffecting theoutputs (i.e. if ft is theonly outputand y\ = yzyi, then y\ is adon't care for j& because
when jfe = 0 the value of j& is not observable at y\).

Inlatter versions of Misn and in sis, thegeneration of thedon'tcare sets has been improved significantly. A subset
of theSDC is used that is known asthesupport subset [40] and consists of thesatisfiability don'tcares of allthenodes
whose support is included in thesupport of thenode being simplified. By using thissubset we can effectively cause a
Boolean substitutionof thenodes of thenetwork intothenode being simplified, butin general wedonotgetmaximum
simplification of thenode. As an example of thesubset filter, while simplifying node yz shown inFigure 5, theSDC
for node y? is generated because thesupport of y$ is a subset of thesupport of yi. Thus substitution of node j& in yi
willhappen if yzcan be expressed in terms of y? and it results in a simpler function for yz.

The techniques for computing observability don't cares computethese in terms of intermediate variables in the
network. External don't cares (EDC) areexpressed with a separate don't care network, as described in Section 2.
To fully utilize ODC's plus EDC's for the simplification of each intermediate node one has to find how the current
representation of thenode is related to these don'tcares. The relation between EDC's plus ODC's and the current
representation ateach node is usually onlythrough primary inputs. To get themostsimplification possible for each
node,one hasto providethis connection, whichis the structure of the Boolean network, to the two-levelminimizer.

Themoststraightforward approach is toestablish this connection through SDC's. SDC's are generated for allthe
nodes in the transitive fanin cone of thenode being simplified to relate thecurrent representation of the nodeto the
primary inputs. SDC's are also generated to relate theEDC plus ODC to theprimary inputs. These are allthenodes
in the transitive fanin coneof the support of the EDC plusODC.

Example: The EDC plus ODC for yz in Figure 5 is d2 = yx + yn (yi is from the ODC and yi2 is from the
EDC). SDC's for nodes y? and y& relate yz to primary inputs. SDC's for nodes ft, %>y*,yio, ft i, and yn relate d2 to
primary inputs. We also generate SDC of &because itmay besubstituted inthe representation of yz. The input tothe
two-level minimizer has 15 input variables and 33 cubes for this very small example. Afternode simplification, the
representation at yz becomes fz = jfe 4- xsx6.



It is obvious that thisapproach is notpractical for networks with many levels; the sizeof satisfiability don'tcare
set grows very large in suchcases andnodesimplification becomes computationally too expensive.

To reduce the size of the input to the two-level minimizer, several techniques are employed. External and
observability don't cares are computed for each nodeusing the techniques in [41]. The external don't cares are only
allowed in two-level form expressed directly in terms of primary inputs. A subset of the ODC called the CODC
(compatible ODC) is computed for the simplification of each node. The compatible property ensures that the don't
care sets on nodes can be used simultaneously with no need for re-computationafter each node has been simplified.
CODC's arecomputed in terms of intermediatevariables in the network. A collapsingand filtering procedure is used
to find a subset of the CODC which is in the transitive fanin cone of the node being simplified. A limited SDC is
generated to use the CODC plus EDC in two-level form. However, EDC's cannot be represented in two-level form
in many cases because the number of cubes in the sum-of-products representation of EDC's grows very large. Also,
because of collapsing and filtering and the limited SDC generated the quality is reduced considerably compared to
what could be obtained using the full don't care set.

Example: The EDC plusODC for yz in Figure5 in termsof primary inputs is d2 = x\ X2X3X4 + x\xzx-ix4. SDC's
for nodes yz, ygand yg must be generated. The input to the two-level minimizer has 9 input variables and 15 cubes.
After node simplification, the representation at yz becomes as before fz = y?+ xsx6.

There is one final improvement to the don't careset computation. Since eachnode hasa local function/, : Br —•
B (assuming r fanins), ideally one would like to express the external plus observability don't cares of each node in
terms of its immediate fanins, not the primaryinputs. These areminterms m\ e BT for which the value of /, can be
either 1 or 0 and the behavior of the Boolean network is unchanged. These local don't cares are related to the EDC,
ODC of yt, and SDC's of the network and are as effective in node simplification as the full don't care set.

Let y0 be the node being simplified and /<> : Br —> B be the local function at this node in terms of its fanins
yi,..., yr. Thelocal don'tcare setd[ is all thepoints in Br for which thevalue of /0 is notimportant.

To find d[, we first find theobservability plus externaldon't care set, dl, in terms of primary inputs..The care set
ofy0 jnterms ofprimary inputs is dj. The local care set d[ is computed by finding all combinations in Br reachable
from dg0. Any combination inBr that isnot reachable from dj isinthe local don't care set d[.

Example: The local don't care for yz isdl2m = yjy% (computed byeffectively simulating the function xx x2x?,xA +
x\ £2x3x4 from the previous example). By examining the subset support, we determine that the SDC of y» should be
included. The input to the two-level minimizer has 5 inputs and 7 cubes. After node simplification, the representation
at yz becomes as before A = y? + X5X6.

The command full-simplify in sis uses the satisfiability, observability,and external don't cares to optimize each
node in a multi-level network as described above. It firstcomputes a set of external plus observability don't cares for
each node: a depth-first traversalof the network startsat the outputs with the external don't cares,and works backward
computing CODC's for each node. At each intermediatenode, the local don't caresare computed in terms of fanins
of the node being simplified by an image computation which uses BDD's. This don't care set is augmented with some
local SDC's, and minimized with the two-level minimizer espresso [4]. Results for full-simplify arereported in [42].
This command shouldnot be appliedto networkswherethe BDD's become too large; thereis a built-inmechanism to
halt the computation if this occurs.

Kernel and Cube Extraction

An importantstep in network optimizationis extracting new nodesrepresenting logic functions thatare factors of
other nodes. We do not know of any Boolean decomposition technique that performs well and is not computationally
expensive; therefore we use algebraictechniques. The basic idea is to look for expressions that are observed many
times in the nodes of the network and extract such expressions. The extracted expression is implemented only once
and the output of that node replaces the expression in any other node in the network where the expression appears.
This technique is dependent on the sum-of-productsrepresentation at each node in the network and thereforea slight
change at a node can cause a large change in the final result, for better or for worse.

The currentalgebraic techniques in misii arebasedon kernels [3]. The kernelsof a logic expression / aredefined
as

KU) = {9 I9 = //c, 9 »* cix&e free }
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where c is a cube, g has at least two cubes and is the resultof algebraic division of / by c, and there is no common
literal among all the cubes in g (i.e. g is cube free). This set is smaller than the set of all algebraic divisors of the
nodes in the network, therefore it can be computed much faster and is almost as effective. One problem encountered
with this in practice is that the number kernels of a logic expression is exponentially larger than the number of cubes
appearing in that expression. Furthermore, after a kernel is extracted, there is no easy way of updating other kernels,
so kernel extraction is usually repeated. Once all kernels are extracted the largest intersection that divides most nodes
in the network is sought There is no notion of the complement of a kernel being used at this stage. After kernels are
extracted, one looks for the best single cube divisors and extracts such cubes. The kernels and cubes are sought only in
normal form. Later on, Boolean or algebraic resubstitution can affect division by the complement as well. Extraction
of multi-cube divisors and common cubes from a network in Misii is done with the gkx and gcx commands.

A more recent algebraic technique extracts only two-cube divisors and two-literal single-cube divisors both in
normal and complement form [57]. This approach has several advantages in terms of computation time while the
qualityof the final result is as goodaskernel-based approaches according to [57] as well as ourexperimentalresults. It
is shownthatthe totalnumberofdouble-cube divisorsandtwo-literal single-cubedivisorsis polynomialin the number
of cubes appearing in the expression. Also, this set is created once, and can be efficiently updatedwhen a divisor is
extracted. Additionally, one looks for both normal and complement form of a divisor in all the nodes in the network
so in choosing the best divisor a better evaluation can be made based on the usefulness of the divisor as well as its
complement. There is also no need for algebraic resubstitutiononce divisors areextracted.

The algorithm worksas follows. Firstalltwo-cube divisors andtwo-literal single-cube divisors arerecognized and
putina list. A weight isassociated witheach divisor which measures howmany literals are saved if that expression is
extracted. Thisweight includes theusefulness of thecomplement inthecases where thecomplements are single cubes
or other two-cube divisors. Common cube divisors are also evaluated at the same time so that "kernel" extraction and
"cube" extraction are nicely interleaved by this process. The divisor withhighest weight is extracted greedily. All
otherdivisorsandtheirweightsareupdated andthewholeprocess is repeated untilno moredivisors canbe extracted.
This technique has beenimplemented in sis and is called fast-extract or fx. Generally, it should replace the misii
commands gkx and gcx sinceits quality is comparable butits speed in manycases is substantially higher [43].

One shortcoming of this approach is thatthe size of each divisoris limitedto no more thantwo cubes. However,
large nodesareeffectively extracted by the combined process of fast-extract andelimination. Elimination is used to
increase the size of some divisors and remove others that are not effective.

Test Pattern Generation and Redundancy Removal

A veryefficient automatic testpattern generation algorithm for combinational logic has been implemented in sis.
First, fault collapsing is performed across simple gates; both fault equivalence andfault dominance are used toreduce
the fault list. Random test generation is done using parallel fault simulation. Aftertherandom patterns have been
simulated, thealgorithm performs a deterministic search to find tests for theremaining faults. This part is based on
the algorithm reported in [19]: a set of equations is written to express the difference between the good and faulty
circuits for a particular fault and Boolean satisfiability is used to find a satisfying assignment for these equations.
The implementation of the algorithm insis has been substantially improved for speed. While the single-stuck-fault
test pattern generation problem is NP-complete, this implementation has been able to produce 100% stuck-at fault
coverage in all testcases available to us. The command atpg file in sis produces a setof testvectors in the file file.
Theredundancy removal command red-removal is based on these techniques and iteratively removes all redundant
faults.

Technology Mapping

Misn uses a tree-covering algorithm to map arbitrary complex logic gates into gates specified in a technology
library [39]. (The technology library is given in genlib format, which is described in Appendix B.) This is done
by decomposing the logicto be mapped intoa network of 2-input NAND gates andinverters. This network is then
"covered" by patterns that represent the possible choices of gates in the library. During thecovering stage thearea
or the delay of the circuit is used as an optimizationcriterion. This has been successful for area minimizationbut
ineffective for performance optimization because the load at the output of gates is notconsidered when selecting
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gates and no optimization is provided for signals that are distributedto several other gates. Recent refinements have
significantly improved it for performance optimization, as reported in [54]; tree coveringhas been extended to take
load values into account accurately. In addition,efficient heuristic fanout optimization algorithms, reported in [51],
have been extended and implemented. They are also usedduringtree covering to estimatedelay at multiplefanout
points; this enables the algorithmto makebetterdecisions in successive mappingpasses over the circuit.

In addition to the technology mapping for delay another command that inserts buffers in the circuit to reduce
delay, is provided. The command buffer_opt [47] takes as inputa circuit mapped for minimumarea (map -m 0) and
inserts buffers to improve circuit performance. This command is subsumed by the map -m 1 -A command which
in addition to adding buffers also makes selections of the gates to implement the logic functions. However, it does
provide a design whose area and delay are intermediate to the minimum-areaand minimum-delaymapped circuits.

Restructuring for Performance

The delay of the circuit is determined by the multi-level structure of the logic as well as the choice of gates used
to implement the functions. There are two algorithms that address the restructuring of the logic to improve the delay.
These are speed-up [48] and reduce-depth [52].

The speed-up command operates on a decompositionof the network in terms ofsimple gates (2-input NAND gates
and inverters). This description is the same as that used by technology mapping. The speed-up command tries to reduce
the depth of the decomposed circuit with the intuition that a small depth representation will result in a smaller delay.
The restructuring is performed by collapsing sections along the long paths and resynthesizing them for better timing
characteristics [48]. Following the restructuring the circuit is mappedfor minimum delay. The recommended use of the
speed-up command is to run the following on an area-optimized circuit: gd *; eliminate -1; speed-up;
map -m 1 -A.

The reduce-depth command takes a different approach to technology-independent network restructuring for
performance optimization [52]. The idea is to uniformly reduce the depth of the circuit. It does this by first clustering
nodes according to some criteriaand then collapsing each cluster into a single node. The clusters are formed as follows:
a maximum cluster size is computed, and the algorithm findsa clustering that respects this size limit and minimizes the
number of levels in the network after collapsing the clusters. The cluster size limit can be controlled by the user. The
clustering and collapsingresults in a large area increase. Hence, it is important to follow the clustering with constrained
area-optimization techniques that will not increase the circuit depth. This is done by using the simplify -1 and
f x -1 commands. The -1 option ensures that depth of the circuit will not increase. A special script script.delay
that uses the reduce-depth command is provided for automating synthesis for performance optimization.

3.2.2 Sequential Optimization

All of the combinational techniques described above can be applied to the combinational blocks between register
boundaries in a sequential circuit. Further improvements can be made by allowing the registers to move and by
performing optimizations across register boundaries. Some of these techniques are described in the following section,
including retiming, retiming and resynthesis, and retimingdon't cares. Some extensions are required for the technology
mapping algorithms to work on sequential circuits. Finally, sequential don't cares based on unreachable states can be
computed and used during node minimization.

Retiming

Retiming [22] is an algorithm that moves registers across logic gates either to minimize cycle time, minimize the
number of registers, or minimize the number of registers subject to a cycle-time constraint. It operates on synchronous
edge-triggered designs. A particular gate is retimed forward by moving registers from each of its fanins to each of its
fanouts (see Figure 6). The sequential I/O behavior of the circuit is maintained. An example of retiming for minimum
cycle time taken from [21] is shown in Figure 7. This example represents a correlator circuit, which takes a stream
of bits and compares it with a pattern a0, o^, a2, a3. The delays of each of the components are given (delay = 3 for a
comparator, 7 for an adder). For this circuit, the cycle time is reduced from 24 to 13.

The originalalgorithm [23] was based on a mixed-integer linearprogramming formulation for determining whether
a particular cycle time is feasible; if so, the correct register positions are determined. Later, more efficient relaxation-
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based techniques werereported[44]. Bothapproaches are implemented in the retime command in sis. Todetermine
theoptimal cycle time, thefeasible cycle time algorithm iscombined with a binary search procedure through a range
of cycle times.

The original circuit may have an initial state associated with theregisters, andthisinitial state should bepreserved
during retiming as it may affect subsequent optimization andbehavior of the circuit Although the retimed circuit
may nothavean equivalent resetstate,a method forcomputing thenewinitialstatewhen possible is reported in [50].
It uses implicit stateenumeration techniques (seeSection 3.2.2) to find a cycleof states containing the reset state.
Simulation along the cycle is used to determine the new initial state for the retimed circuit

Recently thenotion ofa resetable circuitwas proposed [37]. Resetable circuits haveaneasily computed initializing
sequence which brings themachine toaknown state independentofthestateonpower-up. Althoughretimingpreserves
the resetable property, Boolean operations may not. Ata later date the initial state re-computation after retiming may
be combined in sis withinitializing sequences, so thatan optimal choicecan be made.

Retiming Don't Cares

Don'tcare conditions, used for minimization of the logic function at each node ina network, arecomputed based
onother nodes in thenetwork. Forsequential circuits, this is done by considering each combinational logic block
between register boundaries asa separate network: the inputs and outputs ofeach block consist ofprimary inputs and
outputsas wellas register outputs andinputs. Thedon't careconditions arecomputed based on theboundaries of these
blocks.

During retiming, theregisters aremoved and these boundaries change. This invalidates thecomputed don'tcare
information, even though the combinational logic function at each node is unchanged. An algorithm for preserving
themaxima] don'tcare sets during retiming has been reported [46] andiscurrently being implemented insis (itisnot
available in thecurrent release of sis). Although often the don'tcare information can bere-computed based on the
new structure of the logic blocks, in some cases this results in a smaller don't care set Some of the don't cares that
depend onthe original structuremust betranslated todon'tcares for the retimed structureorthey arelost Inparticular,
external, oruser-specified don'tcares cannot bere-computed based onthenew logic blocks andshould bepreserved
during retiming.
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As a by-product of the investigationon retiming don't cares, an algorithm was developed for propagating don't
care conditions forward in a network. That is, given the don't cares for the inputs of a node, an appropriate don't
care function is computed for the output of the node. Techniques for propagatingdon't cares backward have already
beendeveloped in the workon ODC's [42]. Together, the forward and backward propagation algorithms can be used
to propagatedon't careconditions completely throughouta network, regardless of wherethesedon't caresoriginate.

Retiming and Resynthesis

Retiming finds optimal registerpositions withoutaltering thecombinational logicfunctions ateachnode. Standard
combinational techniques optimize a logicnetwork, but givena sequential circuit,the optimization is limitedto each
combinational block: interactions between signals across register boundaries are not exploited.

Thesetwotechniques arecombined in theretiming andresynthesis algorithm [28]. Thefirststepis to identify the
largest subcircuits thatcanbe peripherally retimed, i.e. thatcanberetimed in sucha wayas tomoveall theregisters to
the boundaries of the subcircuit Peripheral retimingis an extended notionof retimingwhere"negative"latchesat the
boundary are allowed(timeis borrowed fromthe environment) as longas theycan be retimedawayafterresynthesis.
After peripheral retiming, standard combinational techniques are used to minimize the interior logic. Finally, the
registers are retimed backintothe circuitto minimize cycletimeor thenumber of registers used. Anexample of this
procedureis shown in Figure 8. In the example,pure combinational optimizationwould not yield any improvement,
and standard retiming as it was first described cannotbe applied to the circuit It is only by combining peripheral
retiming, which allows negative registers, and resynthesis that the improvement is obtained.

This algorithmhas been successful in performance optimization of pipelinedcircuits [29]. Experiments with area
minimizationare ongoing, but it is expected that good results will be obtained only when the latest combinational
optimization techniques, which use a larger set of observabilitydon't cares, are employed. In particular, those that
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use a maximal observability don't care set can exploit the signal dependencies exposed duringperipheral retiming.
Retiming andresynthesis willbe implemented in sis afterfurther investigation and experimentation.

Technology Mapping

The strategy of representing feedback lines by latches preserves the acyclic nature of the circuit representation
and allows the combinational technology mapping algorithms to be easily extended to sequential mapping [33]. The
same tree-coveringalgorithm [39] is used but the pattern matching procedure is extended to accommodate sequential
elements. The pattern matching relies no longer on just the network topology but also on the type of library element
and on the location of latch input and output pins. By choosing to treat the problem of selecting a clocking scheme
(single-phase synchronous, multi-phase synchronous or even asynchronous) and clocking parameters as a higher level
issue, the output of sequential technology mapping can be controlled by simply restricting the types of sequential
elements allowed in the technology library. This approach can handle complex latches which are either synchronous
or asynchronous, butnotboth(forexample, synchronous latches withasynchronous set/reset)3.

Implicit State Enumeration Techniques

Recently, methods for implicitly enumerating the states in a finite-state machine have been reported and can be
used to explore the state space in very large examples [10,53]. Such techniques employ a breadth-first traversal of
sets of states of a machine. Beginning with an initial state set, all the states reachable in one transition from that set
are computed simultaneously, then all the states reachable in two transitions, etc. Efficient implementation of this
technique requires careful computation of the product of the transition relation (present-state/next-state relation) and
the current set of states. This can be done eitherby reducingthe size of the resulting functionduringcomputationby
eliminating variables appropriately [53],or by usinga divideand conquerapproach [10]. Each function is efficiently
implemented and manipulated using BDDs [6].

These techniquesare useful for generating sequentialdon't care conditions. The reachable state set is computed
with implicit techniques; the complement of this set represents the unreachable states. These are don't care conditions
expressed in terms of the registers in the circuit. In sis the commandextract-seq-dc extracts the unreachablestates
and stores them as external don't cares. Subsequentcalls to fulLsimplify (see Section 3.2.1) exploit these don't cares.

Implicit state enumerationtechniquesare also useful for verification. The equivalenceof two finite-statemachines
(logic-level implementations) can be verified by computing the reachable states for the product machine. The two
machines may havedifferentstate encodings. At each iteration, the statesreachedare checked for equivalentoutput
functions. The verify_fsm commandin sis has verified machines with more than 1068 states [53].

33 Signal Transition Graph Manipulations

The design input to sis need not be a synchronous specification. An asynchronous specification can be givenas a
signaltransition graph. In thissection, algorithms are outlinedfor the synthesis of hazard-free circuitsunderdifferent
delay models from signal transition graphs.

If a signal transition graph is correct (live, safe, free choice and with a consistent labeling), then it can be
automatically synthesized if it satisfies another condition:

♦ complete state coding: whenever twomarkings havethesame label, thentheymustenable thesamesetof output
transitions.

The synthesis is performed by exhaustive simulation of all reachable markings. This produces a state graph,
where eachmarking is associated witha state, andeach edge, representing a transition firing, joinsthecorresponding
predecessor andsuccessor markings. Forexample, inFigure3(c)thestategraphfragment corresponding toFigure3(a)
is shown, wherethe state labeled 0100corresponds to v\ beingmarked.

If thesignal transition graph is correct andhascomplete statecoding, thenwecanderive from thestategraph an
implied value foreachoutputsignal ineachstateas follows. Forevery states, for every outputsignal x, the implied
value of x in s is:

3Such latches cannot be represented byacombinational network feeding alatch element; the require some additional logic at the latch output.
This introduces cyclic dependency tothecostfunction, and thetree-covering can nolongerbesolved byadynamic programming algorithm.
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♦ the valueof x in the label of s if no transition for x is enabled in the markingcorresponding to s. Forexample,
in state0100, corresponding to p\ being marked, no transition for c is enabled, so the implied valueof c is 0.

• otherwise, the complement of that value. For example, in state 0100 transition b2 is enabled, so the implied
value of b in 0100 is 0.

A combinational function, computing the implied value for each input label (minterm) obviously implements the
required behavior of each output signal. This straightforwardimplementation, though, can still exhibit hazards (i.e.
temporary deviations from the expected values, due to the non-zero delays of gates and wires in a combinational
circuit), sis provides an implementation of the algorithmsdescribed in [32] and [20] to produce hazard-freecircuits
under the unbounded gate-delay model and the bounded wire-delay model respectively.

The commands that operate on a signal transition graphand produce an asynchronous circuit implementation of it
can be roughly classified as analysis and synthesis commands.

Analysis commands

astgjcurrent prints some information on the current signal transition graph.•

•

•

astg-marking prints the currentmarking, if any, of the signal transition graph (it is useful if the marking was
obtained automatically by sis , since this is an expensive computation).

astg-print-sg printsthe stategraphobtainedduringthe synthesis process(mainly useful fordebuggingpurposes).

• astg-print-stat prints a brief summary of the signal transitiongraph and state graphcharacteristics.

Synthesis commands

• astgjsyn synthesizes a hazard-freecircuit using the unboundedgate-delay, model. It eliminates hazards from the
initial circuit produced from the implied values as described above, by adding redundant gates and/or adding
input connections to some gates, as described in [32]. This command (as well as astg-toJf) can compute the
initial marking if it is not explicitly given.

• astg-to-f synthesizes a circuit(like astg-syn), but in additionit analyzesand stores itspotential hazardsusing the
boundedwire-delay model4. Thosehazards can beeliminated, after aconstrained logic synthesis andtechnology
mapping, by the astg-slow command.

• astg-slow insertsdelays,asdescribed in [20], in orderto produceahazard-freecircuitinaspecificimplementation
technology. Note that this step can take advantage oftheknowledge about minimum delays in the environment.
These delays can either be given as a single lower bound, with the -d option, or in a file, with the -f option.
Each line in this environment delay file contains a pair of signalsand a pair of numbers, and represents the
minimum guaranteed lower bound on the delay between a transition on the first signal and a rising/falling
transition respectively on the second signal.

In order to do worst-case hazard analysis, astg-slow also provides a rudimentary mechanism to describe gates
with upper and lower bounds on the delay, using the -m option. This option specifies a multiplicative factor
to obtain the minimum delay of each gate, given its maximum delay as specified by the gate library used for
technology mapping.

Note that theastg-toJ andastg-slow commandsrequire thatonly algebraicoperations duringlogic synthesisin
orderto guarantee hazard-free synthesis. Namely only the sweep, fx, gkx, gcx, resub, eliminate, decomp and
map commands can be used. Other commands such as simplify and full-simplify may re-introduce hazards.

4Notethata circuit thatdoes nothavehazards withtheunbounded gate delay model,where allwiredelays areassumed tobe zero, canexhibit
hazards with the bounded wire-delay model. The designershoulduse the delaymodel that best suits the underlyingimplementation technology
(see [71).

5Bydefault theenvironmentisassumedtorespond instantaneously, since thisrepresents apessimistic worst-case assumption forhazard analysis.
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•

•

TLU Synthesis
xl_ao cube-packing on an infeasible network
xl-k-decomp apply Roth-Karp decomposition
xl-split modified kernel extraction
xlimp apply different decomposition schemes and pick the best
xLabsorb reduce infeasibility of the network
xlxover use binate covering to minimize number of blocks
xLpartition minimize number of blocks by collapsing nodes into immediate fanouts
xl-part-coll initial mapping and partialcollapse on the network
xLmerge identify function-pairs to be placed on the same CLB
xl-decomp-two cube-packing targeted for two-output CLB's
xl_rl reduce number of levels

-xl-nodevalue print infeasible nodes

MB Synthesis
acunap block count minimization for actl and act architectures

Table 1: PGA Synthesis Commands in sis

astgjcontract, given a specificoutputsignalx forwhich logicneeds to be synthesized,removes from the signal
transition graph all the signals that are not directly required as inputs of the logic implementing x. Note that
contraction is guaranteed to yield a contracted signal transition graph with complete state coding only if the
originalsignal transitiongraph was a markedgraph.

astgJockgraph, given a correct signal transition graph without complete state coding, uses the algorithm
described in [56] to producea signaltransition graph with lessconcurrency but complete statecoding (so thatit
can be synthesized). Note that this technique works successfully only for markedgraphs.

• astg-persist ensures that the signal transition graph is persistent, i.e. no signal that enables a transition can
changevalue before that transition has fired (this property ensures a somewhat simpler implementation,at the
costof a loss in concurrency). Note thatthis command workssuccessfully only formarked graphs.

• astg-to-stg produces a state transition graph representation that describes a behaviorequivalent to the signal
transition graph. It canbe used, forexample,to compare a synchronous andan asynchronous implementation
of (roughly) the same specification.

3.4 Logic Synthesis for Programmable Gate Arrays (PGA's)

Synthesizing circuits targeted for particular PGA architectures requires new architecture-specific algorithms. A
number of thesehavebeenimplemented in latter versions of misii,andare beingimproved andenhanced in sis. These
algorithms are described briefly in this section. A summary of thecommands in sis for PGAsynthesis are given in
Table 1.

The basic PGAarchitectures share a common feature: repeated arrays of identical logicblocks. A logicblock (or
basicblock) is a versatile configuration of logicelements thatcan be programmed by the user. There aretwo main
categories of blockstructures, namely Table-Look-Up (TLU) and Multiplexor-Based (MB); theresulting architectures
arecalled theTLU andtheMB architectures respectively. A basic blockofaTLU architecture (also calledconfigurable
logicblock orCLB) implements any function having up to m inputs, m > 2. Fora givenTLU architecture, m is a
fixednumber. A typicalexampleis the Xilinx architecture [18], in which m = 5. In MB architectures, the basicblock
is a configuration of multiplexors [13]. In sis, combinational circuits can be synthesized forboththesearchitectures.
Areaminimization for botharchitectures and delay minimization for TLUarchitectures are supported. Weare working
on extending the capabilities to handle sequential circuits.
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The algorithms and the corresponding commands that implement them in sis are described next. For complete
details of the algorithms, the reader may refer to [34,35,36].

3.4.1 Synthesis for TLU architectures

If a function has at most m inputs, we know it can be realized with one block. We call such a function m-feasible.
Otherwise, it is m-infeasible. A network is m-feasible if the function at each node of the network is m-feasible. Let
us first address the problem of minimizing the number of basic blocks used to implement a network. We assume that
the technology-independentoptimizations have been already applied on the given network description.

In order to realize an infeasible network using the basic blocks, we have to first make infeasible nodes feasible.
After obtaining a feasible network, we have to minimize the number of blocks used. These two subproblems are
described next.

Making an infeasible node feasible

Decomposition is a way of obtaining smaller nodes from a large node. We use decomposition to obtain a set of
m-feasible nodes for an infeasible node function. The following is a summary of various decomposition commands
for TLU architectures that are in sis:

xl_ao cube-packing on an infeasible network
xl-k-decomp apply Roth-Karp decomposition
xl-split modified kernel extraction
xl-imp apply different decomposition schemes and pick the best

Cube-packing [14] used in xl_ao treats the cubes (product-terms) of the function as items. The size of each cube
is the number of literals in it. Each logic block is a bin with capacity m. The decomposition problem can then be seen
as that of packing the cubes into a minimum number of bins.

xl-k-decomp uses classical Roth-Karp decomposition [38] to decompose an infeasible node into m-feasible nodes.
A set X (called the bound set) of cardinality m is chosen from the inputs of the infeasiblefunction /. The rest of the
inputs form \hefree set Y. Then the Roth-Karp techniquedecomposes / as follows:

f(X, Y) = gMX), a2(X),..., ap{X), Y) (1)

where a\, a2}..., ap are m-feasible functions. If p + \Y| > m, g is infeasible and needs to be decomposed further.
To get the best possible decomposition, all possible choices of bound sets have to be tried. With options -e and -£,
all bound sets of a node are tried and the one resulting in the minimum number of nodes is selected.

xl-split extracts kernels from an infeasible node. This procedure is recursively applied on the kernel and the node,
until either they become m-feasible or no more kernels can be extracted, in which case a simple and-or decomposition
is performed.

xl-imp tries to get the best possible decomposition for the network. It applies a set of decomposition techniques
on each infeasible node n of the network. These techniques include cube-packing on the sum-of-products form of n,
cube-packing on the factored form of n, Roth-Karp decomposition, and kernel extraction. The best decomposition
result - the one which has a minimum number of m-feasible nodes - is selected.

One command which does not necessarily generate an m-feasible network, but reduces the infeasibilityof a network
is xl-absorb. Infeasibility of a network is measured as the sum of the number of fanins of the infeasible nodes. The
command xl-absorb moves the fanins of the infeasible nodes to feasible nodes so as to decrease the infeasibility of the
network. Roth-Karp decomposition is used to determine ifa fanin of a node could be made to fan in to another node.

Block Count Minimization

After decomposition, an m-feasible network is obtained and may be mapped directly onto the basic blocks.
However, it may be possible to collapse some nodes into their fanouts while retaining feasibility. The following
commands in sis do the block count minimization:

xljcover use binate covering
xl-partition collapse nodes into immediate fanouts
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xLcover enumerates all sets of nodes which can be realized as a single block. Each such set is called a supernode.
The enumeration is done using the maximum flow algorithmrepeatedly. A smallest subset 5 of supernodes that satisfy
the following three constraints is selected:

1. each node of the network should be included in at leastone supernodein S,

2. each input to a supernodein S should eitherbe an output of anothersupernodein S, or an externalinput to the
network, and

3. each output of the network should be an output of some supernode in S.

This is a binate covering formulation [39]. Mathony's algorithm [30] is used to solve this formulation. For large
networks, this algorithm is computationally intensive and several heuristics for fast approximate solutions are used
(option -h).

xl-partition tries to reduce the number ofnodes by collapsingnodes into their immediate fanouts. It also takes into
account extra nets created. It collapses a node into its fanout only if the resulting fanout is m-feasible. It associates a
cost with each (node, fanout) pairwhich reflects the extra nets created ifnode is collapsed into the fanout. It then selects
pairswith lowest costs and collapses them. With -1 option, a node is considered for collapsing into all the fanouts, and
is collapsed if all the fanouts remain m-feasible after collapsing. The node is then deleted from the network. Further
optimization results by considering the technique of moving of fanins (using -m option). This technique is applied as
follows. Before considering the collapse of node n into its fanout(s), we check if any fanin F of n could be moved
to G - another fanin of n. This increases the chances of n being collapsed into its fanout(s). Moreover, it may later
enable some other fanin of n to be collapsed into n.

Overall Algorithm

We firstapply technology-independentoptimization on the given network. Each infeasible node of this network is
mapped as follows. We firstdecompose it into an m-feasible subnetwork using the techniques discussed above. The
block count minimization is then applied on this subnetwork. Applying decomposition and block count minimization
node-by-node gives better results than first applying decomposition on the entire network and then using block count
minimization. The reasonis that the exact block count minimization on the full network is computationally intensive,
and hence is run only in heuristic mode.

The node-by-node mapping paradigm does not exploit structuralrelationship between the nodes of the network.
This is achieved in command xl-part-coll (tor partial collapse)by collapsingeach node into its fanouts, remapping
the fanouts, and computing the gain from this collapse. A greedy approach is employed - the collapse is accepted if it
results in a gain.

Next we apply a heuristicblock count minimization on the entire network (for example xl jcover -h 3).
For good results, the following script may be used:

xl.part-coll -m -g 2
xl_coll-ck

xl-partition -m
simplify
xl-imp
xl-partition -t
xl-cover -e 30 -u 200

xl-coll-ck -k

For very fast results, the following script may be used:
xl-ao

xl-partition -tm

xLcoll-ck collapses a feasible network if the numberof primary inputs is small (specified by -c option),applies
Roth-Karp decomposition and cofactoring schemes, picks the best result and compares with the original network
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(before collapsing). If the number of nodes is smaller, accepts the better decomposition. It does nothing if m = 2. If
-k option is specified, Roth-Karp decomposition is not applied; only cofactoring is used.

Note that in all the commands, the default value of m is 5. It may be changed by specifying -n option to each
command. Intermediate points in the quality-time trade-off curve may be obtained by suitably modifying the scripts.

One useful command not described above is -xLnodevalue -v support. It prints nodes that have at least support
fanins. This command is used to make sure that a feasible network has indeed been obtained. For example, if m = 5,
use -xl-nodevalue -v 6.

Handling Two Outputs

There are special features in some TLU architectures. For example, in the Xilinx architecture, a CLB may
implement one function of at most 5 inputs, or two functions if both of them have at most 4 inputs each and the total
number of inputs is at most 5 (in which case they are called mergeable). The problem is to minimize the number of
two-output CLB's used for a given circuit description. Sis has two special commands for handling two-output CLB's:

xLmerge identify function-pairs to be placed on the same block
xl-decomp-two cube-packing targeted for two-output CLB's

The approachcurrently followed in sis is to minimize first the number of single-output blocks using the script(s)
described above and then use xl_merge as a post-processing step to place maximum number of mergeable function-
pairs in one CLB each. This reduces to the following problem: "Given a feasible network, find the largest set of
disjoint pairsofmergeablefunctions." We have shown that this problem canbe formulated as the maximum cardinality
matching problem in a related graph. An exact solution can be generatedusing Undo,an integer linear programming
package. If Undois not found in the path, xl.merge switches to a heuristic to solve the matching problem.

A different approach that sometimes gives better results is the following. First obtain a 4-feasible network (by
running any one of the above scripts with -n 4) and then use xl-merge without -F option. Since there are no nodes
with 5 inputs, all nodes can potentially pair with other nodes. As a result the number of matches is higher. When
-F option is not used, xl_merge first finds maximum number of mergeable function pairs and then applies block
minimization on the subnetwork consisting of unmatched nodes of the network. This sometimes results in further
savings; We recommend that the user should use scripts for both 4-feasible and 5-feasible, apply xl-merge and pick
the network that uses lower number ofCLB's.

The command xl-decomp-two does decomposition ofthe network targeted for two-outputCLB's. It is a modifica
tion of the cube-packing approach. However, it does not guarantee a feasiblenetwork; other decomposition commands
should be run afterwards to ensure feasibility.

Timing Optimization

xl-rl performs delay optimizations during logic synthesis. Given a feasible network (preferably generated by
speed-up), xl_rl reduces the number oflevels ofTLU blocks used in the network. Then any block count minimization
command (e.g. xLcover, xLpartition) can be applied to reduce the number of blocks without increasing the number
of levels. The details of the complete algorithm may be found in [36].

3.4.2 Synthesis for MB architectures

We have implemented synthesis algorithms for Actel's actl architecture (Figure 9). The command is called act-map.
The architecture act (that is, actl with the OR gate removed) is also supported. No library needs to be read.

The outline of the algorithm [34] is as follows: first, for each node of the network a BDD (ordered or unordered) is
constructed. The basic block of the architecture is represented with pattern graphs. The problem ofcovering the BDD
with minimum number of pattern graphs is solved by first decomposing the BDD into trees and then mapping each
tree onto the pattern-graphsusing a dynamic programmingalgorithm. The overall algorithm is very similar to the one
for TLU architecture. After initial mapping, an iterative improvement phase of partial collapse, decomposition and
quick phase is entered. Quick phase decides if it is better to implement a node in the complement form. The user may
specify number of iterations, limits on number of fanins of nodes for collapsing or decomposition. A bdnet-like file
may be generated in which case the mapped network consists ofnodes that are implemented by one basic block each.
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MUX3

actl act

Figure 9: Two multiplexor-based architectures

3.5 Summary of SIS

Someof the new commands in sis and their functions are summarized in Table2. Currentlysis is being exercised
on a number of standard and industrial examples, and being tested at various academic and industrial locations. The
algorithms, particularlysimplification and verification, are beingrun throughlargeexamplesto test their robustness in
terms ofCPU time and memory usage.

New techniques are being explored for overcoming current limitations in the size of the circuits that can be
manipulated. Onedirection forimprovement is BDDordering. Sincetheordering of variables forconstructinga BDD
hasa direct effect on thesizeof theBDD, withimproved algorithms fordetermining thevariable ordering, thesizeof
the BDDswilldecrease allowinglargercircuitsto be synthesized with thesetechniques.

The sequential technology mapping algorithm supports both synchronous and asynchronous latches, but not
synchronous latches withasynchronous signals (e.g. set,reset). These latches cannotberepresented byacombinational
network feeding a latch element; some additional logic is required at the latch output This introduces a cyclic
dependency to thecost function, and the tree-covering canno longerbe solvedbya dynamic programming algorithm.
Solutions to this problem are underinvestigation. Onepossibility is to tag every primary inputand outputnodeas
eithersynchronous or asynchronous. Then, a latch withasynchronous set/reset signals canbe represented as a latch
withonlysynchronous set/reset signals, and themapper distinguishes between thetwoby thetypes of inputpins.

A projectis underway to store an un-encoded state machine in an MDDrepresentation (multiple-valued decision
diagram) [49]ratherthanthecumbersome STGrepresentation; stateassignment algorithms thatworkfrommulti-level
logicdescriptions represented as MDDs arebeing explored. Alsounderinvestigation aretechniques forsequential test
pattern generation. Whilethe blif format allows a hierarchical net-list to be given,currently the hierarchy is flattened
to a singlesequential circuitin sis. This limitation is beingaddressed in thedevelopment of a hierarchical version of
sis.

4 Part II: Using the SIS Design Environment

4.1 Synchronous Synthesis Example

The synthesis of a sequential circuitusingsis is best illustrated withan example. The example chosen is markl,
which is in theMCNC benchmark set [26]. Thespecification is given in theKiss format (partof a smaller example in
Kiss is embedded in the BUF specificationofFigure 2).

sis> reacMciss markl.kiss2

markl.kiss2 pi= 5 po=16 nodes= 0 latches= 0
lits(sop)= 0 lits(fac)= 0 #states(STG)= 16
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STG Manipulation
one-hot quick state assignment using one-hot encoding
state-assign find an optimal binary code for each state and create a corresponding network
state-minimize minimize the number of states by merging compatible states
stgjcover verify that the STG behavior contains the logic behavior
stg-extract extract an STG from a logic implementation

Combinational Optimization
full-simplify simplify the two-level function at each node using external, satisfiability,and observability don't cares
fx extract common single-cube and double-cube divisors
red-removal remove combinational redundancies

reduce-depth improve performance by selectively reducing the circuit depth

Sequential Optimization
randr optimize using combined retiming and resynthesis
retime move the registers for minimum cycle or minimum number of registers

ASTG Analysis
astgjcurrent

astg-marking
astg-print-sg
astg-print-stat

ASTG Synthesis
astg-syn

astg-to-f
astg-slow
astgjcontract
astg-lockgraph
astg-persist
astg-to-stg

Miscellaneous

extract-seq-dc
verify-fsm

print ASTG information
print initial marking
print state graph (after synthesis)
print other ASTG information

synthesize hazard-free implementation with unbounded gate-delay
synthesize and do hazard analysis with bounded wire-delay
remove hazards (after mapping) with bounded wire-delay
reduce the ASTG to the signals required for a single output
ensure complete state coding (marked graph only)
ensure persistency (marked graph only)
produce state transition graph equivalent to ASTG

test pattern generation on combinational logic (assumes a scan design)
extract unreachable states and store as external don't cares

verify the equivalence of two state machines using implicit state enumeration techniques

Table 2: Partial List of New sis commands
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Some statistics are given: the name of the circuit, the number of primary inputs and outputs, the number of nodes
in the multi-level logic implementation, the number of latches, the number of literals in sum-of-product and factored
form, and the number ofstates in the STG. The number of literals is the number ofvariables in true and complemented
form that appear in the Boolean functions for all nodes. The number of literals in factored form is roughly equal to
the number of transistor pairs that would be required for a static CMOS implementation. Since only the STG data
structure is present, the only statistics reported are number of inputs and outputs and the number of states in the STG.

State minimization is performed on the circuit with the stamina program

sis> state_minimize stamina

Running stamina, written by June Rho, University of Colorado at Boulder
Number of states in original machine : 16
Number of states in minimized machine : 12

markl.kiss2 pi= 5 po=16 nodes= 0 latches= 0
lits(sop)= 0 lits(fac)= 0 #states(STG)= 12

and the number of states in the STG is reduced from 16 to 12.

State assignment determines binary codes for each stateand substitutes these codes for the symbolic states, creating
a logic-level implementation.

sis> state_assign jedi

markl.kiss2 pi= 5 po=16 nodes= 20 latches= 4
lits(sop)= 195 lits(fac)= 144 #states(STG)= 12

The jedi state assignment program targets a multi-level implementation, The number of latches reflects the number of
encoding bits used by the state assignment program. There are four unused state codes; these will later be extracted
and used as don't care conditions during the optimization.

Next the standard script from misii is called, which iteratively extracts common cubes and factors, resubstitutes
them in the node functions, and collapsesnodes whose literal-countsavings is below a threshold. The result is a circuit
with a significant improvement in the number of literals.

sis> source script

markl.kiss2 pi= 5 po=16 nodes= 16 latches= 4
lits(sop)= 91 lits(fac)= 81 #states(STG)= 12

No further improvement can be obtainedby subsequent invocations of the standard misii script The powerful
node simplificationprocedure is called to minimize the Boolean functions at each node using a large don't care set,
which includes both ODC's and SDC's.

sis> full_simplify

markl.kiss2 pi= 5 po=16 nodes= 16 latches= 4
lits(sop)= 91 lits(fac)= 80 #states(STG)= 12

In this case, the improvement is insignificant, but furtherimprovements can be obtained by running the simplifi
cation algorithm with sequential don't cares. These don't caresare unreachable states computed using implicit state
enumeration techniques.

sis> extract_seq_dc

number of latches = 4 depth = 6 states visited = 12
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During this process, 12 states are visited in breadth-first order, and the remaining 4 are stored as don't care conditions.
These are exploited by full-simplify.

sis> full_simplify

markl.kiss2 pi= 5 po=16 nodes= 16 latches= 4

lits(sop)= 79 lits(fac)= 70 #states(STG)= 12

The series ofcommands executed above demonstrate the improvements that the full-simplify algorithm with sequential
don't cares obtains over the simplify algorithm in the MISII standard script. However, our recommendation is to use
a new script, scriptrugged instead of the misii standard script. The new script extracts factors faster using fx, and
hence will quickly reduce the size of large examples. Initially it uses the faster but less powerful misii minimization;
full-simplify is used later in the script for powerful node minimization. For the markl example, a better result than
the one shown above can be obtained automatically by invoking scriptrugged. The following commands are applied
to markl after state assignment.

sis> extract_seq_dc
sis> source script.rugged

markl.kiss2 pi= 5 po=16 nodes= 17 latches= 4

lits(sop)= 70 lits(fac)= 66 #states(STG)= 12

The retiming algorithm can be run to improve the cycle time of the circuit

sis> retime -n

Lower bound on the cycle time = 3.40

Retiming will minimize the cycle time
RETIME: Initial elk = 13.60, Desired elk =3.40

initial cycle delay =13.60
initial number of registers = 4
initial logic cost = 78.00
initial register cost =4.00

Failed at 3.40 : Now attempting 8.50
Failed at 8.50 : Now attempting 11.05
Failed at 11.05 : Now attempting 12.32
Failed at 12.32 : Now attempting 12.96
Failed at 12.96 : Now attempting 13.28
Failed at 13.28 : Now attempting 13.44
Success at 13.44, Delay is 13.40
Success: Now attempting 13.34

Quitting binary search at 13.34

final cycle delay = 13.40

final number of registers = 8
final logic cost = 78.00
final register cost =8.00

RETIME: Final cycle time achieved = 13.40
markl.kiss2 pi= 5 po= 16 nodes= 17 latches= 8
lits(sop)= 70 lits(fac)= 66

The result is that the cycle time decreases from 13.6 to 13.4, while the number of latches increases from 4 to 8. In
this example, the increase in latches outweighs the small decrease in cycle time. However, in many cases only a small
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increase in the number of latches is required for a significant improvement in cycle time. Moreover, the user can
control the tradeoff between latch count and cycle time.

Finally, a library of gates including latches is read in.

sis> rlib lib2.genlib

lib2.genlib is based on a standard-cell design style and is from the MCNC benchmark set [26]. It hasbeen augmented
with latches. The circuit is mapped into a net-list ofgatesand latches in this target technology.

sis> map -s
total gate area: 104864.00

maximum arrival time: (19.75,20.35)

markl.kiss2 pi= 5 po=16 nodes= 50 latches= 9
lits(sop)= 120 lits(fac)= 105

The number of literalschanges as the mapping routine restructures the network to fit the target technology. The gate
areais based on standard-cell grid count, and the arrival time is computed with static timing analysis, using the delays
on the gates given in the library. The two numbers representthe maximum rise and fall delays.

A new script, scriptdelay, is provided with sis and targets performanceoptimization. It should be used after area
optimization is complete. If it is invoked for markl after the rugged script is used, the result is as follows:

total gate area: 116000.00

maximum arrival time: ( 8.08, 8.19)

This is comparedwith the best results for area optimization,which, in the example above, is the circuitobtainedafter
the last application of scriptrugged:

total gate area: 79344.00

maximum arrival time: (15.82,16.33)

The useofscriptdelay resulted in a 50%improvement in speed fora46% penaltyin area. Again,the usercancontrol
the trade-offbetween area anddelay by varyingthe parameters suppliedto the variousalgorithms.

4.2 Asynchronous Synthesis Example

Let us examinea simpleexampleof a signal transition graph from [8], shown in Figure 10. It is a markedgraph (no
placehas multiple predecessors or successors), and no initialmarking is given.

.model two_phase_fifo

.inputs Ri Ao D

.outputs Ro Ai L

.graph

D- L-/1 Ro

ll-/l Ai-

Ai- Ri+

Ri+ L+/1

Ro- Ao-

Ao- L+/1

L+/1 D+

D+ L-/2 Ro+

L-/2 Ai+

Ai+ Ri-

Ri- L+/2
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Ri Ao D Ro Ai L

Figure 10: A Signal Transition Graph and its State Graph

Ro+ Ao+

Ao+ L+/2

L+/2 D-

.end

Suppose that the signal transition graph is contained in a file called chul50. g. The following sis session shows
an example of how to use the main commands that use the unboundedgate-delay model.

sis> read_astg chul50.g
sis> astg_syn „;
sis> print

Ai_next = Ai_ D + Ai_ {L} + D {L}'
{L} = Ao D Ri' + Ao' D' Ri

{Ro} = D

{Ai} = Ai_
sis> print_latch
input: {Ai_next} output: Ai_ init val: 1 cur val: 1 type: as control: none
sis> print_io
primary inputs: Ri Ao D Ai_
primary outputs: {Ai_next} {Ro} {Ai} {L}
sis> astg_current
two_phase_fifo

File: chul50.g (modified)
Pure: Y Place-simple: Y

Connected: Y Strongly Connected: Y

Free Choice: Y Marked Graph: Y State Machine: N
SM components: 4

MG components: 1

sis> astg_marking
{<L+/2,D->}

sis> astg_print_stat
File Name = chul50.g
Total Number of Signals =

Initial State = state 55 :

6 (I = 3/0 = 3)

(Ri=0 Ao=l D=l Ro=l Ai=l L=l )

enabled transitions : [D- ]
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Total Number of States =26

sis>

astg-syn automatically computes an initial marking, printed with astg-marking, that corresponds to the (implicit)
place between L2 andD~ beingmarked, and hence to thestate labeled 011111 in the stategraph.

Note that the function of signal Ai depends on the signal itself. In order to break the asynchronous feedback loop,
an asynchronous latch is inserted between primary outputAi-next and primary input Ai.. So each output signal that is
part of an asynchronous feedback loop is represented inside sis by three distinct signals:

• a "fictitious" primary input (distinguished by "_"),

• a "fictitious" primary output (distinguished by ".next"),

• a "real" primary output.

All three signals, though, are actually directly connected to each other, since an asynchronous latch represents only a
delay element used to break the loop. This representation trick is required to describe an asynchronous circuit within
a framework better suited for synchronous systems.

Signals L and Ro, on the other hand, are purely combinational, hence they are just represented as a combinational
logic block.

Now we can examine a similar session using the bounded wire-delay model commands.

sis> read_astg chul50.g
sis> astg_to_f
sis> print

{Ro_next} = D
[15] = Ai_ D + Ai_ L_ + D L_'
{Ai} = Ai_
[17] = Ao D Ri' + AO' D' Ri

{L} = L_

sis> print_latch
input: {[15]} output: Ai_ init val: 1 cur val: 3 type: as control: none
input: {[17]} output: L_ init val: 1 cur val: 3 type: as control: none
sis> print_io
primary inputs: Ri Ao D Ai_ L_
primary outputs: {Ro_next} {Ai} {L} {[15]} {[17]}
sis> read_library asynch.genlib
sis> map -W
sis> print_latch
input: {[587]} output: Ai_ init val: 1 cur val: 3 type: as control: none
input: {[586]} output: L_ init val: 1 cur val: 3' type: as control: none
sis> print_io
primary inputs: Ri Ao D Ai_ L_
primary outputs: {Ro_next} {Ai} {L} {[587]} {[586]}
sis> print_gate -s
ao33:combinational : 1 (area=64.00)

delay:asynch : 1 (area=0.00)

inv:combinational : 3 (area=16.00)

nor2:combinational : 2 (area=24.00)

sr_nor:asynch : 1 (area=40.00)
Total: 8 gates, 200.00 area

sis> print_delay -ap 1 o()
... using library delay model
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Figure 11: An implementation of Figure 10

{[587]} : arrival=( 4.60 4.60)

sis> astg_slow -d .8
Slowing down D (fails by 0.6>0)

sis> print_gate -s
ao33:combinational :

delay:asynch :

inv:combinational :

nor2:combinational :

sr_nor:asynch :

Total: 10 gates, 232.00 area

sis> print_delay -ap 1 o()
... using library delay model

{[587]} : arrival=( 7.00 7.00)

sis>

The synthesized circuit is shown in Figure 11, where the delay element symbol denotes an asynchronous latch that
is implemented by a simple wire. The delays reported by print-delay are measured within the combinational logic
only, so the longest path of7.0 units at the end is between nodes D and [586].

Note that in the bounded wire-delay case asynchronous latches are used to implement every signal (not just self-
dependent ones), in order to be able to trace delays across the network. The only exception is signalRo, whose function
is just a wire. The circuit after technology mapping has a hazard due to the early arrival of signal D if we use a delay
model where the minimum delay across a gate is 80% of its maximum delay (as specified by -d .8). So astg-slow
inserts a pair of inverters after D, thus increasing both the area and the delay of the circuit in order to eliminate all
hazards.

If on the other hand, using our knowledgeof the environment behavior, we couldassume that the minimum reaction
time of the environment is 2 time units (as specified by -t 2), then the circuit would be hazard-free without the need to
insert any delay:

sis> read_astg chul50.g
sis> astg_to_f
sis> read_library asynch.genlib
sis> map -W
sis> astg_slow -d .8 -t 2
sis> print_gate -s
ao33:combinational : 1 (area=64.00)

delay:asynch : 1 (area=0.00)

inv:combinational : 3 (area=16.00)

nor2:combinational : 2 (area=24.00)

1 (area=64.00)

(area=0.00)

5 (area=16.00)

2 (area=24.00)

(area=40.00)
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sr_nor:asynch : 1 (area=40.00)
Total: 10 gates, 200.00 area

sis> print_delay -ap 1 o()
... using library delay model

{[587]} : arrival=( 4.60 4.60)

sis>

5 Conclusions

sis is a comprehensive system for synthesizing and optimizing sequential circuits. It is easily interfaced with other
design tools through widely used interchange formats, and integrates a number of state-of-the-art algorithms for
synthesis, optimization, testing, and verification. Several scripts are provided to automate the synthesis process and to
serve as a starting point for experimentation with the parametersofeach algorithm, sis targets specifically a sequential
circuit design methodology and thereby can exploit properties specific to sequential circuits.

6 Acknowledgements

sis is ajointproject supported by the professors (in particularProfessorsBrayton, Newton, and Sangiovanni-Vincentelli)
and many of the graduate students in the CAD group at U.C. Berkeley. Many of the ideas about sequential and
combinational logic synthesis have originated in the advanced classes and research seminars within the group. Many
students have contributed code and participated in the development of sis : Luciano Lavagno, Sharad Malik, Cho
Moon, Rajeev Murgai, Alex Saldanha, Hamid Savoj, Ellen Sentovich, NarendraShenoy, Tom Shiple, KanwarJit Singh,
Moshe Steiner, Paul Stephan, Colin Stevens, Herve* Touati and Huey-Yih Wang. Several programs are distributed with
sis: jedi (state assignment) contributedby Bill Lin, nova (state assignment) contributedbyTiziano Villa, and stamina
(state minimization) contributed by June-Kyung Rho at the University of Colorado at Boulder. Tony Ma wrote the
senum program upon which the STG extraction algorithm is based. We gratefully acknowledge the support of NSF
under grantEMC-8419744, DARPA under grantJFBI90-073, the SRC, the state ofCalifornia MICRO program, Intel,
AT&T, DEC, and Motorola.

References

[1] VAX DECSIMReferenceManual. Digital Equipment Corporation,December 1985. Not generally available.

[2] Karen A. Bartlett, Robert K. Brayton, Gary D. Hachtel, Reily M. Jacoby, Christopher R. Morrison, Richard L.
Rudell, Alberto Sangiovanni-Vincentelli, and Albert R. Wang. Multilevel Logic Minimization Using Implicit
Don't Cares. IEEETransactionson Computer-AidedDesign,7(6):723-740, June 1988.

[3] R.K. BraytonandC. McMullen. The Decompositionand Factorization of BooleanExpressions. In Proceedings
ofthe InternationalSymposiumon Circuitsand Systems, pages49-54, May 1982.

[4] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L. Sangiovanni-Vincentelli. Logic
Minimization Algorithmsfor VLSISynthesis. Kluwer Academic Publishers, 1984.

[5] RobertK.Brayton,RichardRudell,AlbertoSangiovanni-Vincentelli,and AlbertR.Wang. MIS: A Multiple-Level
Logic Optimization System. IEEETransactions on Computer-Aided Design, CAD-6(6): 1062-1081, November
1987.

[6] R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers,
C-35, August 1986.

[7] J. A. Brzozowski and C-J. Seger. Advances in Asynchronous Circuit Theory - Part I: Gate and Unbounded
InertialDelay Models. Bulletinofthe European Association ofTheoretical Computer Science, October 1990.

29



[8] T. A. Chu. Synthesis of Self-timed VLSI Circuitsfrom Graph-theoretic Specifications. PhD thesis, MIT, June
1987.

[9] T. A. Chu. Synthesis of Hazard-free Control Circuits from Asynchronous Finite State Machine Specifications.
In ACMIntl.Workshop on Timing Issues in theSpecification andSynthesis ofDigital Systems, pages 1-10,1992.

[10] O. Coudert, C. Berthet, and J.C. Madre. Verification of Sequential Machines Based on Symbolic Execution. In
Proc. of the Workshop on Automatic Verification Methodsfor Finite State Systems,Grenoble, France, 1989.

[11] G. DeMicheli. Synchronous Logic Synthesis: Algorithms for Cycle-Time Minimization. IEEETransactions on
Computer-Aided Design, 10(l):63-73, January 1991.

[12] Andrea Casotto editor. Octtools-5.1 Manuals. In UCBElectronicsResearchLab, September 1991.

[13] A. Gamalet. al. An ArchitectureforElectrically ConfigurableGateArrays. IEEE Journal ofSolid-StateCircuits,
24(2):394-398, April 1989.

[14] R J. Francis, J. Rose, and Z. Vranesic. Chortle-crf: FastTechnology Mapping for Lookup Table-Based FPGAs.
In Proceedings of the Design AutomationConference, pages 227-233, June 1991.

[15] G. De Micheli. Synchronous logic synthesis. In International Workshop on Logic Synthesis, page 5.2, North
Carolina, May 1989.

[16] Abhijit Ghosh. Techniques for Test Generation and Verification in VLSI Sequential Circuits. UCB PhD The
sis, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720,
December 1991.

[17] G.D. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the Minimization of
Incompletely SpecifiedState Machines. In The Proceedings of theEuropean Conference on DesignAutomation,
pages 184-191, Amsterdam, The Netherlands,February 1991.

[18] Xilinx Inc. Xilinx Programmable Gate ArrayUser's Guide, 1988.

[19] T. Larrabee. Efficient Generation ofTest Patterns Using Boolean Difference. InProceedings of theInternational
Test Conference, pages 795-801,1989.

[20] L. Lavagno, K. Keutzer,and A. Sangiovanni-Vincentelli. Algorithms forSynthesis of Hazard-free Asynchronous
Circuits. In Proceedings of theDesignAutomation Conference, pages302-308, June 1991.

[21] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by Retiming. In Advanced
Research in VLSI: Proceedings oftheThird Caltech Conference, pages86-116. Computer Science Press, 1983.

[22] C. E. LeisersonandJ. B. Saxe. Retiming Synchronous Circuitry. In TM372, MIT/LCS, 545 Technology Square,
Cambridge, Massachusetts 02139, October 1988.

[23] C.E. Leiserson and J.B. Saxe. Optimizing Synchronous Systems. Journal of VLSI and Computer Systems,
l(l):41-67, Spring 1983.

[24] B. Lin and AH. Newton. Synthesis ofMultiple Level Logic from Symbolic High-Level DescriptionLanguages.
In Proceedings of the InternationalConference on VLSI, pages 187-196, August 1989.

[25] B. Lin, H. Touati, and A.R. Newton. Don't Care Minimization of Multilevel Sequential Logic Networks. In
Proceedingsofthe InternationalConference on Computer-Aided Design, pages414-417, November 1990.

[26] R. Lisanke. Logic synthesis benchmarkcircuits forthe International Workshopon Logic Synthesis, May, 1989.

30



[27] A. Malik, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. A Modified Approach to Two-level Logic Minimiza
tion. In Proceedings of the International Conference on Computer-Aided Design, pages 106-109, November
1988.

[28] S. Malik, E.M. Sentovich, R.K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and resynthesis: Optimization
ofsequential networks with combinational techniques. IEEETransactions on Computer-Aided Design, 10(1):74-
84, January 1991.

[29] S. Malik, KJ. Singh, R.K. Brayton, and A. Sangiovanni-Vincentelli. Performance Optimization of Pipelined
Circuits. In Proceedings ofthe International Conference on Computer-Aided Design, pages 410-413, November
1990.

[30] H.-J. Mathony. Universal Logic Design Algorithm and its Application to the Synthesis of Two-level Switching
Circuits. IEE Proceedings, 136 Pt. E(3), May 1989.

[31] M.C. Paulland S.H. Unger. Minimizing the Number of States in Incompletely Specified Sequential Switching
Functions. IRETransactions on Electronic Computers, EC-8:356-367, September 1959.

[32] C. W. Moon, P. R. Stephan, andR. K. Brayton. Synthesis of Hazard-free Asynchronous Circuits from Graphical
Specifications. In Proceedings of the International Conference on Computer-Aided Design, pages 322-325,
November 1991.

[33] C.W. Moon, B. Lin, H. Savoj, andR.K. Brayton. Technology Mapping forSequential Logic Synthesis. InProc.
Int'l. Workshop on Logic Synthesis, North Carolina, May 1989.

[34] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni Vincentelli. Logic Synthesis for
Programmable GateArrays. In Proceedings of theDesign Automation Conference, pages620-625, June 1990.

[35] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni Vincentelli. Improved Logic Synthesis Algorithms
forTable Look Up Architectures. In Proceedings of theInternational Conference on Computer-Aided Design,
pages 564-567, November 1991.

[36] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni Vincentelli. Performance Directed Synthesis for
Table LookUp Programmable GateArrays. InProceedings of theInternational Conference onComputer-Aided
Design, pages 572-575, November 1991.

[37] C. Pixley and G. Beihl. Calculating Resetability and Reset Sequences. In Proceedings of the International
Conference on Computer-Aided Design,November 1991.

[38] JJP. Rothand R.M. Karp. Minimization over Boolean Graphs. In IBM Journal ofResearch andDevelopment,
April 1982.

[39] R. Rudell. Logic Synthesis for VLSI Design. Memorandum No. UCB/ERL M89/49, Electronics Research
Laboratory, CollegeofEngineering, University ofCalifornia, Berkeley, CA 94720,April 1989.

[40] Alexander Saldanha, Albert Wang, RobertK. Brayton, and AlbertoL. Sangiovanni-Vincentelli. Multi-Level
LogicSimplification using Don'tCares and Filters. InProceedings ofthe Design Automation Conference, pages
277-282,1989.

[41] H. Savoj and R.K. Brayton. The Use of Observability and External Don't Cares for the Simplification of
Multi-LevelNetworks. In Proceedings of theDesign Automation Conference, pages 297-301, June 1990.

[42] H.Savoj,R.K. Brayton, andH.Touati. Extracting Local Don'tCares forNetworkOptimization. InProceedings
oftheInternational Conference on Computer-Aided Design,November 1991.

[43] H. Savoj, H.-Y. Wang,andR.K. Brayton. Improved Scripts in MIS-II forLogic Minimizaton ofCombinational
Circuits. In TheInternational Workshop onLogicSynthesis, May 1991.

31



[44] JamesB. Saxe. DecomposableSearching ProblemsandCircuitOptimization byRetiming:TwoStudiesinGeneral
Transformations of Computational Structures. CMU-CS-85-162, Carnegie-Mellon University, Department of
Computer Science, August 1985.

[45] R. Segal. BDSYN:Logic Description Translator;BDSIM: Switch-LevelSimulator. Master's Thesis, Memoran
dum No. UCB/ERL M87/33,Electronics Research Laboratory, CollegeofEngineering, UniversityofCalifornia,
Berkeley, CA 94720, May 1987.

[46] E.M. Sentovich and R.K. Brayton. Preserving Don't CareConditions DuringRetiming. In Proceedings of the
InternationalConference on VLSI, pages 461-470, August 1991.

[47] KJ. Singh and A. Sangiovanni-Vincentelli. A Heuristic Algorithm for the Fanout Problem. In Proceedingsof
the Design Automation Conference, pages 357-360, June 1990.

[48] KJ. Singh, A.R. Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli. Timing Optimization of Combinational
Logic. In Proceedings of the International Conferenceon Computer-Aided Design, pages 282-285, November
1988.

[49] A. Srinivasan, T. Kam, S. Malik, and R.K. Brayton. Algorithms for Discrete Function Manipulation. In
Proceedings ofthe International Conferenceon Computer-AidedDesign, pages 92-95, November 1990.

[50] H. Touati and R.K. Brayton. Computing the Initial States ofRetimed Circuits. IEEETransactions on Computer-
Aided Design, July 1992. To appear.

[51] H. Touati, C. Moon, R.K. Brayton, and A.Wang. Performance-Oriented Technology Mapping. In Proceedings
of the sixth MIT VLSIConference, pages 79-97, April 1990.

[52] H. Touati, H. Savoj, and R.K. Brayton. Delay Optimization of Combinational Logic Circuits by Clustering and
PartialCollapsing. In Proceedings ofthe InternationalConferenceon Computer-Aided Design, November 1991.

[53] H. Touati, H. Savoj, B. Lin, R.K. Brayton, and AX. Sangiovanni-Vincentelli. Implicit State Enumeration of
Finite State Machines using BDD's. In Proceedings oftheInternationalConferenceon Computer-Aided Design,
pages 130-133, November 1990.

[54] Herv6J.Touati. Performance-OrientedTechnologyMapping.Memorandum No. UCB/ERL M90/109, Electronics
Research Laboratory,College ofEngineering, University ofCalifornia, Berkeley, CA 94720, November 1990.

[55] S. H. Unger. AsynchronousSequential SwitchingCircuits. Wiley Interscience, 1969.

[56] P. Vanbekbergen, G. Goossens, and H. De Man. A Local Optimization Technique for Asynchronous Control
Circuits. In Proc. Int'l. Workshopon Logic Synthesis,North Carolina, May 1991.

[57] J. Vasudevamurthy and J. Rajski. A Method for Concurrent Decomposition and Factorization of Boolean
Expressions. In Proceedings of the International Conference on Computer-Aided Design, pages 510-513,
November 1990.

[58] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations. IEEETransactionson Computer-AidedDesign, 9(9):905-924, September 1990.

32



Appendix A : Berkeley Logic Interchange Format (blif)

The goal of blif is to describe a logic-level hierarchical circuit in textual form. A circuit is an arbitrary combinational
or sequential network of logic functions. A circuit can be viewed as a directed graph ofcombinational logic nodes and
sequential logic elements. Each node has a two-level, single-output logic function associated with it Each feedback
loop must contain at least one latch. Each net (or signal) has only a single driver, and either the signal or the gate
which drives the signal can be named without ambiguity.

In the following, angle-brackets surround nonterminals, and square-brackets surround optional constructs.

1 Models

A model is a flattened hierarchical circuit. A buf file can contain many models and references to models described in
other buf files. A model is declared as follows:

.model <decl-model-name>

.inputs <decl-input-list>

.outputs <decl-output-list>

.clock <decl-clock-list>

<command>

<command>

.end

decl-model-name is a string giving the name of the model.

decl-input-list is a white-space-separated list of strings (terminated by the end of the line) giving the formal input
terminals for the model being declared. If this is the first or only model, then these signals can be identified as
the primary inputs of the circuit. Multiple .inputs lines are allowed, and the lists of inputs are concatenated.

decl-output-listis a white-space-separated list of strings (terminated by the end of the line) giving the formal output
terminals for the model being declared. If this is the first or only model, then these signals can be identified as
the primary outputs of the circuit Multiple .outputslines are allowed, and the lists of outputs are concatenated.

decl-clock-listis a white-space-separated list of strings (terminated by the end of the line) giving the clocks for the
model being declared. Multiple .clock lines are allowed, and the lists of clocks are concatenated.

<logic-gate> <generic-latch> <library-gate>
command is oneOf: <model-reference> <subfile-reference> <fsm-descrlption>

<clock-constraint> <delay-constraint>

Each command is described in the following sections.

The buf parser allows the .model, .inputs, .outputs, .clockand .end statements to be optional. If .model is not
specified, the decl-model-name is assigned the name of the buf file being read. It is an error to use the same string for
decl-model-name in more than one model. If inputs is not specified, it can be inferred from the signals which are not
the outputs of any other logic block. Similarly, .outputscan be inferred from the signals which are not the inputs to
any other blocks. If any .inputs or .outputs are given, no inference is made; a node that is not an output and does not
fanout produces a warning message.

If .clockis not specified (e.g., for purely combinationalcircuits) there are no clocks, .end is implied at end of file
or upon encountering another .model.

Important: the first model encountered in the main buf file is the one returned to the user. The only .clock,
clock-constraint, and timing-constraint constructs retained are the ones in the first model. All subsequent models can
be incorporated into the first model using the model-reference construct.

Anywhere in the file a *#' (hash) begins a comment that extends to the end of the current line. Note that the
character '#' cannot be used in any signal names. A ' V (backslash) as the last character of a non-comment line
indicates concatenation of the subsequent line to the current line. No whitespace should follow the' \\

Example:

33



.model simple

.inputs a b

.outputs c

.names a b c # .names described later
11 1

.end

# unnamed model
.names a b \
c # *\' here only to demonstrate its use
11 1

Both models "simple" and the unnamed model describe the same circuit

2 Logic Gates

A logic-gate associates a logic function with a signal in the model, which can be used as an input to other logic
functions. A logic-gate is declared as follows:

.names <in-l> <in-2> ... <in-n> <output>
<single-output-cover>

output is a string giving the name of the gate being defined.

in-1, in-2,... in-n are strings giving the names of the inputs to the logic gate being defined.

single-output-cover is, formally, an n-input, 1-output PLA description ofthe logic function corresponding to the logic
gate. {0,1, -} is usedin the n-bitwide"inputplane" and {0,1} is used in the 1-bitwide"outputplane". The
ON-setis specified with 1's in the "output plane," and the OFF-set is specified with 0's in the "output plane." The
DC-setis specified for primary output nodes only, by using the construct .exdc.

A sample logic-gate with its single-output-cover.

.names v3 v6 j u78 vl3.15
1—0 1
-1-1 1

0-11 1

In a given row of the single-output-cover, "1" means the input is used in uncomplemented form, "0" means the
input is complemented, and "-" means not used. Elements of a row are ANDedtogether, and then all rows are ORed.

As a result, if the last column (the "output plane") of the single-output-cover is all l's, the first n columns (the
"input plane") of the single-output-covercan be viewed as the truth table for the logic gate named by the string output.
The order of the inputs in the single-output-cover is the same as the order ofthe strings in-1, in-2,..., in-n in the .names
line. A space between the columns of the "input plane" and the "output plane" is required.

The translation of the above sample logic-gate into a sum-of-products notation would be as follows:

V13.15 = (v3 u78') + (v6 u78) + (v3' j u78)

To assign the constant "0" to some logic gate j, use the following construct:

.names j

To assign the constant "1", use the following:

.names j
1

The string output can be used as the input to another logic-gate before the logic-gate for output is itself defined.
For a more complete description of the PLA input format, see espresso(5).
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3 External Don't Cares

External don't cares are specified as a separate network within a model, and are specified at the end of the model
specification. Each external don't care function, which is specified by a .namesconstruct, must be associated with a
primary output of the main model and specified as a function of the primary inputs of the main model (hierarchical
specification of external don't cares is currently not supported).

The external don't cares are specified as follows:

.exdc

.names <in-l> <in-2> ... <in-n> <output>
<single-output-cover>

exdc indicates that the following .names constructs apply to the external don't care network.

output is a string giving the name of the primary output for which the conditions are don't cares.

in-1, in-2,... in-n are strings giving the names of the primary inputs which the don't care conditions are expressed in
terms of.

single-output-cover is an n-input, 1-output PLA description of the logic function corresponding to the don't care
conditions for the output.

The following is an example circuit with external don't cares:

.model a

.inputs x y

.outputs j

.subckt b x=x y=y jaj

.exdc

.names x j
I 1

.end

.model b

.inputs x y

.outputs j

.names x y j
II 1

.end

The translationof the above example into a sum-of-products notation would be as follows:

j = x * y;
external d.c. for j = x;

4 Flip flops and latches

A generic-latch is used to create a delay element in a model. It represents one bit of memory or state information.
The generic-latchconstruct can be used to createany type of latch or flip-flop (see also the library-gate section). A
generic-latch is declared as follows:

.latch <input> <output> [<type> <control>] [<init-val>]

input is the data input to the latch.

output is the output of the latch.

type is oneof {fe, re, ah, al,as}, which correspond to "falling edge," "rising edge," "active high," "active low," or
"asynchronous."

control is the clocking signal for the latch. It canbe a .clockof the model, the outputofany functionin the model, or
the word "NIL" for no clock.
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init-val is the initial state of the latch, which can be one of {0, 1, 2, 3}. "2" stands for "don't care" and "3" is
"unknown." Unspecified, it is assumed "3."

If a latch does not have a controlling clock specified, it is assumed that it is actually controlled by a single global
clock. The behavior of this global clock may be interpreted differently by the various algorithms that may manipulate
the model after the model has been read in. Therefore, the user should be aware of these varying interpretations if
latches are specified with no controlling clocks.

Important: All feedback loops in a model must go through a generic-latch. Purely combinational-logic cycles
are not allowed.

Examples:

.inputs d # a clocked flip-flop

.output q

.clock c

.latch d q re c 0

.end

.inputs in # a very simple sequential circuit

.outputs out

.latch out in 0

.names in out

0 1

.end

5 Library Gates

A library-gate creates an instance of a technology-dependent logic gate and associates it with a node that represents
theoutputof the logicgate. Thelogicfunction of thegateanditsknown technology dependent delays, drives,etc. are
stored with the library-gate. A library-gate is one of the following:

.gate <name> <formal-actual-list>

.mlatch <name> <formal-actual-list> <control> [<init-val>]

name is the name of the .gate or .mlatch to instantiate. A gate or latch with this name must be present in the current
working library.

formal-actual-list is a mapping between the formal parameters of name (the terminals of the library-gate) and the
actual parameters of the current model (any signals in this model). The format for a formal-actual-list is a
white-space-separated sequence of assignment statements of the form:

formall=actuall formal2=actual2 ...

All of the formal parameters of namemust be specified in Oneformal-actual-list and the single output of name
must be the last one in the list

control is the clocking signal for the mlatch, which can be either a .clockof the model, the output of any function in
the model, or the word "NIL" for no clock.

init-val is the initial state of the mlatch, which can be one of {0,1, 2, 3}. "2" stands for "don't care" and "3" is
"unknown." Unspecified, it is assumed "3."

A .gate refers to a two-level representation of an arbitrary input single output gate in a library. A .gate appears
under a technology-independent interpretation as if it were a single logic-gate.

A .mlatch refers to a latch (not necessarily a D flip flop) in a library. A .mlatch appears under a technology-
independentinterpretationas if it were a singlegeneric-latch and possiblya single logic-gatefeedingthe data input of
that generic-latch.
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.gates and .mlatches are used to describe circuits that have been implemented using a specific library of standard
logic functions and their technology-dependent properties. The library of library-gates must be read in before a buf
file containing .gate or .mlatch constructs is read in.

The string name refers to a particulargate or latch in the library. The names "nand2," "inv," and "jk-risingjedge"
in the following examples are descriptive names for gates in the library. The following buf description:

.inputs vl v2

.outputs j

.gate nand2 A=vl B=v2 0=x # given: formaIs of this gate are A, B, 0

.gate inv A=x 0=j # given: formals of this gate are A & O

.end

could also be specified in a technology-independent way (assuming "nand2" is a 2-input nand gate and "inv" is an
inverter) as follows:

.inputs vl v2

.outputs j

.names vl v2 x

0- 1

-0 1

.names x j
0 1

.end

Similarly:

.inputs j kbar

.outputs out

.clock elk

.mlatch jk_rising_edge J=j K=k Q=q elk 1 # given: formals are J, K, Q

.names q out
0 1

.names kbar k

0 1

.end

could have been specified in a technology-independent way (assuming "jk-risingjedge" is a JK rising-edge-triggered
flip flop) as follows:

.inputs j kbar

.outputs out
•clock elk

.latch temp q re elk 1 # the .latch

.names j k q temp # the .names feeding the D input of the .latch
-01 1

1-0 1

.names q out
0 1

.names kbar k

0 1

.end

6 Model (subcircuit) references

A model-reference is used to insert the logic functions of one model into the body ofanother. It is defined as follows:

.subekt <model-name> <formal-actual-list>

model-nameis a string giving the name of the model being inserted. It need not be previously defined in this file,but
should be defined somewhere in either this file, a .search file, or a master file that is .searching this file, (see
.search below)

formal-actual-list is a mapping between the formalterminals(the deel-input-list,decl-output-list,and decl-clock-list)
of the called model model-name and the actual parameters of the currentmodel. The actualparameters may be
any signals in the currentmodel. The format foraformal-actual-list is the same as its format in a library-gate.
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A .subckt construct can be viewed as creating a copy of the logic functions of the called model model-name,
including all of model-name'sgeneric-latches, in the callingmodel. The hierarchical natureof the buf descriptionof
the model does not have to be preserved. Subcircuits can be nested, but cannot be self-referential or create a cyclic
dependency.

Unlike a library-gate, a model-reference is not limited to one output.
The formals need not be specified in the same order as they are defined in the decl-input-list, decl-output-list, or

decl-clock-list; elements of the lists canbe intermingledin any order, providedthe names aregiven correctly. Warning
messages are printed if elements of the decl-input-list or decl-clock-list are not driven by an actual parameter or if
elementsofthe decl-output-list do not fanout to anactual parameter. Elementsof the decl-clock-list anddecl-input-list
may be driven by any logic function of the calling model.

Example: rather than rewriting the entire buf description for a commonly used subcircuit several times, the
subcircuit can be described once and called as many times as necessary:

.model 4bitadder

.inputs A3 A2 AI AO B3 B2 Bl BO CIN

.outputs COUT S3 S2 SI SO

.subckt fulladder a=A0 b=B0 cin=CIN s=S0 cout=CARRYl

.subckt fulladder a=A3 b=B3 cin=»CARRY3 s=S3 cout=COOT

.subckt fulladder b>=>Bl a=Al cin=CARRYl s=XX cout=CARRY2

.subckt fulladder a=JJ b=B2 cin=CARRY2 s=S2 cout=CARRY3
# for the sake of example,

.names XX SI # formal output *s' does not fanout to a primary output
1 1

.names A2 JJ # formal input *a' does not fanin from a primary input
1 1

.end

.model fulladder

.inputs a b cin

.outputs s cout

.names a b k

10 1

01 1

.names k cin s

10 1

01 1

.names a b cin cout
11- 1

1-1 1

-11 1

.end

7 Subfile References

A subfile-reference is:

.search <file-name>

file-name gives the name of the file to search.

A subfile-reference directs the BUF reader to readin anddefineall the models in filefile-name. A subfile-reference
does not have to be inside of a .model, subfile-references can be nested.

Search files would usuallybe used to hold all the subcircuits referred to in model-references, while the master file
merely searches all the subfiles and instantiates all the subcircuits it needs.

A subfile-reference is not equivalent to including the body of subfilefile-name in the current file. It does not
patch fragments of buf into the current file; it pauses reading the current file, reads file-name as an independent,
self-contained file, then returns to readingthe current file.

The first .model in the master file is always the one returned to the user, regardless of any subfile-references than
may precede it
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8 Finite State Machine Descriptions

A sequential circuitcan be specified in buf logic form, as a finitestate machine, or both. An fsm-description is used
to inserta finitestatemachinedescription of the current model. It is intendedto represent the samesequential circuit
as the currentmodel (which contains logic), but in FSM form. The format of anfsm-description is:

.start_kiss

.i <num-inputs>

.o <num-outputs>
[.p <num-terms>]
[.s <num-states>]
[.r <reset-state>]
<input> <current-state> <next-state> <output>

<input> <current-state> <next-state> <output>
.end_kiss
[.latch_order <latch-order-list>]
[<code-mapping>]

num-inputs is the numberof inputs to the FSM, which shouldagreewith the numberof inputs in the .inputsconstruct
for the current model.

num-outputs is the number of outputs of the FSM, which shouldagree with the number of outputs in the .outputs
construct for the current model.

num-terms is the number of "<input> <current-state> <next-state> <output>" 4-tuples that follow in the FSM
description.

num-statesis the number of distinct states that appear in "<current-state>" and "<next-state>"columns.

reset-stateis the symbolic name for the reset state for the FSM; it shouldappear somewhere in the "<current-state>"
column.

inputis a sequenceof num-inputs membersof {0,1, -}.

output is a sequence of num-outputs members of {0,1, -}.

current-state and next-state are symbolic names for the current state and next state transitions of the FSM.

latch-order-list is a white-space-separated sequence of latchoutputs.

code-mapping is newline separatedsequence of:

.code <symbolic-name> <encoded-name>

num-terms and num-states do not have to be specified. If the reset-state is not given, it is assignedto be the first
state encountered in the "<current-state>" column.

The ordering of thebitsin the input and output fields willbe thesame astheordering of thevariables in the .inputs
and .outputs constructsif both anfsm-description andlogic functions aregiven.

latch-order-list and code-mapping are meant to be used when both anfsm-description anda logical description
of the model are given. The two constructs together provide a correspondence between the latches in the logical
description andthe statevariables in thefsm-description. In a code-mapping, symbolic-name consists of a symbolic
name from the "<current-state>" or "<next-state>" columns, and encoded-name is the pattern of bits ({0,1}) that
represent the stateencoding forsymbolic-name. The code-mapping shouldonly be given if both anfsm-description
and logic functions are given, .latch-order establishes a mapping between the bits of the encoded-names of the
code-mapping construct and the latches of the network. The order of the bits in the encoded names will be the same
as the orderof the latch outputs in the latch-order-list. There should be the same number of bits in the encoded-name
as therearelatches if both anfsm-description anda logical description arespecified.
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If both logic-gates and an fsm-description of the model are given, the logic-gate description of the model should
be consistent with the fsm-description, that is, they should describe the same circuit. If they are not consistent there
will be no sensible way to interpret the model, which should then cause an error to be returned.

If only the fsm-description of the network is given, it may be run through a state assignment routine and given a
logic implementation. A sole fsm-description, having no logic implementation, cannot be inserted into another model
by a model-reference; the state assigned network, or a network containing both logic-gates and anfsm-description can.

Example of an fsm-description:

.model 101 # outputs 1 whenever last 3 inputs were 1, 0, 1

.start kiss

.i 1 ~

.o 1

0 stO stO 0

1 stO stl 0

0 stl st2 0

1 stl stl 0

0 st2 stO 0

1 st2 st3 1

0 st3 st2 0

1 st3 stl 0

.end_kiss

.end

Above example with a consistentfsm-description and logical description:

.model

•inputs vO
.outputs v3.2
.latch [6] vl 0
.latch [7] v2 0
.start kiss

.11 "
•o 1

.p 8

.s 4

.r stO

0 stO stO 0

1 stO stl 0

0 stl st2 0

1 stl stl 0

0 st2 stO 0

1 st2 st3 1

0 st3 st2 0

1 st3 stl 0

.end_kiss

.latch_order vl v2

.code stO 00

.code stl 11

.code st2 01

.code st3 10

.names vO [6]
1 1

.names vO vl v2 [7]
-1- 1

1-0 1

.names vO vl v2 v3.2

101 1

.end

9 Clock Constraints

A clock-constraint is used to set up the behaviorof the simulatedclocks, and to specify how clock events (risingor
fallingedges) occurrelative to one another. A clock-constraint is one or more of the following:

.cycle <cycle-time>

.clock_event <event-percent> <event-l> [<event-2> ... <event-n>]
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cycle-time is a floating point number giving the clock cycle time for the model. It is a unitless number that is to be
interpreted by the user.

event-percent is a floating point number representing a percentage of the clock cycle time at which a specific
.clockjevent occurs. Fifty percent is written as "50.0."

event-1 through event-nare one of the following:

<rise-fall>'<clock-name>
(<rise-fall>'<clock-name> <before> <after>)

where rise-fall is either"r" or"f' and stands for the risingor fallingedge of the clock and clock-name is a clock
from the .clock construct. The apostrophe betweenrise-fall andclock-name isa separator, andserves no purpose
in and of itself.

beforeand afterare floating point numbers in the same"units" as the cycle-timeandareused to define the "skew" in
the clock edges, before represents maximum amountof time before the nominaltime thatthe edge canarrive;
after represents the maximum amount of time after the nominal time that the edge can arrive. The nominal
time is event-percent% of the cycle-time. In the unparenthesized form for the clock-event, before andafterare
assumed "0.0."

All events,event-1... event-n, specified in a single .clockjevent areto be linked together. A routinechanging any
one edge shouldalsomodify the occurrence time of all the related clock edges.

Example 1:

.clock clockl clock2

.clock_event 50.0 r'clockl (f'clock2 2.0 5.0)

Example 2:

.clock clockl clock2

.clock_event 50.0 r'clockl

.clock_event 50.0 (f'clock2 2.0 5.0)

Bothexamples specifyanominaltime of 50% of thecycle time, thattherisingedgeofclockl must occuratexactly
the nominal time, and that the falling edge of clock2 may occur from 2.0 units before to 5.0 units after the nominal
time.

In Example 1, if r'clockl is latermoved to a differentnominaltime by some routine then f'clock2 shouldalso be
changed. However, in Example 2 changing r'clockl wouldnotaffect f'clock2 even though they originally havethe
same value of event-percent.

10 Delay Constraints

A delay-constraint is used to specify parameters to more accurately compute the amount of time signals take to
propagate from one point to anotherin a model. A delay-constraint is one or more of:

.area <area>

.delay <in-name> <phase> <load> <max-load> <brise> <drise> <bfall> <dfall>

.wire_load_slope <load>

.wire <wire-load-list>

.input_arrival <in-name> <rise> <fall> [<before-after> <event>]

.default_input_arrival <rise> <fall>

.output_required <out-name> <rise> <fall> [<before-after> <event>]

.default_output_required <rise> <fall>

.input_drive <in-name> <rise> <fall>

.default input_drive <rise> <fall>

.output_Toad <out-name> <load>

.default_output_load <load>

rise, fall,drive, and loadare all floating pointnumbers giving therise time, fall time,inputdrive, andoutput load.
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in-name is a primary input andout-name is a primary output.

before-after can be one of {b, a}, corresponding to "before" or "after," and event has the same format as the
unparenthesized form of event-1 in a clock-constraint.

.area sets the area of the model to be area.

.delay sets thedelay for inputin-name. phase isoneof"INV," "noninv," or"unknown" for inverting, non-inverting,
orneither, max-load is a floating point number for themaximum load, brise, drise, bfall, and ofall are floating
point numbers giving the block rise, drive rise, block fall, and drive fall for in-name.

.wireJoad-slope sets the wire load slope for the model.

.wire sets the wire loads for the model from the list of floating point numbers in the wire-load-list.

.input-arrival sets theinputarrival time for theinputin-name. If theoptional arguments are specified, then theinput
arrival time is relative to the event.

.output-required sets theoutputrequired time fortheoutputout-name. If theoptional arguments are specified, then
the output required time is relative to the event.

input-drive sets the input drive for the input in-name.

.outputJoadsets the output load for the output out-name.

.defaultJnput-a'rrival, .defaultj>utputjrequired, .defaultJnput-drive, .default-outputJoad setthe corresponding de
fault values forall the inputs/outputs whosevalues are not specifically set

There is no actual unit for all the timing and load numbers. Special attention should be given when specifying
and interpreting thevalues. The timing numbers are assumed tobe in thesame "unit" as thecycle-time in the .cycle
construct
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Appendix B : Genlib Format

This is a descriptionof the genlib format which is used to specify librarygates in sis.

1 Combinational Gate Specification

A cell is specified in the following format:

GATE <cell-name> <cell-area> <cell-logic-function>
<pin-info>

<pin-info>

<cell-name> is the name of the cell in the cell library. The resulting net-list will be in terms of these names.

<cell-area> defines the relative areacost of the cell. It is a floating point number, and may be in any unit system
convenient for the user.

<cell-logic-function> is an equation written in conventionalalgebraic notationusing the operators'+' for OR, '*' or
nothing(space) for AND,'!' or "' (post-fixed) forNOT, andparentheses forgrouping. The namesof the literals
in the equationdefine the input pin names forthe cell;the nameon the left handsideof the equationdefinesthe
output of the cell. The equation terminates with a semicolon.

Only single-outputcells may be specified. The'!' operator may only be used on the input literals,or on the final
output;it is not allowed internalto an expression. (This constraint may disappear in the future).

Also, the actual factored form is significant when a logic function has multiple factored forms. In principle, all
factored forms couldbe derived for a given logic function automatically; this is not yet implemented, so eachmust be
specified separately. Note that factored forms which differby a permutation of the input variables (orby De Morgan's
law) are not considered unique.

Each <pin-info> has the format

PIN <pin-name> <phase> <input-load> <max-load>
<rise-block-delay> <rise-fanout-delay>
<fall-block-delay> <fall-fanout-delay>

<pin-name> must be the name of a pin in the <cell-logic-function>, or it can be * to specify identical timing
information for all pins.

<phase> is INV,NONINV,orUNKNOWN corresponding to whether the logic function is negative-unate, positive-
unate, or binate in this input variable respectively. This is required for the separate rise-fall delay model. (In
principle, this informationis easily derived fromthe logic function; this fieldmay disappear in the future).

<input-load> gives the input loadof this pin. It is a floating pointvalue,in arbitrary units convenient for the user.

<max-load> specifies a loading constraint for the cell. It is a floating point value specifying the maximum load
allowed on the output

<rise-block-delay> and <rise-fanout-delay> are the rise-time parameters for the timing model. They are floating
pointvalues, typically in the units nanoseconds, andnanoseconds/unit-load respectively.

<fall-block-delay> and <fall-fanout-delay> are the fall-time parameters for the timing model. They are floating
pointvalues, typically in the units nanoseconds, andnanoseconds/unit-load repsectively.

All of the delay informationis specifiedon a pin-by-pinbasis. The meaningis the delay information for the most
criticalpin is used to determine the delay for the gate.

43



2 Latch Specification

Latches are specified as follows:

LATCH <cell-name> <cell-area> <cell-logic-function>
<pin-info>

<pin-info>
<latch-spec>
[<clock-delay-info>]
[<constraint-info>]

<cell-name>, <cell-area>, <cell-logic-function> and <pin-info> are the sameas in the combinational case.

<latch-spec> has the following format

SEQ <latch-input> <latch-output> <latch-type>

<latch-input> must be the name of the output of the cell. Thus, <latch-input> is described as a function of
<latch-output> in the <cell-logic-function>. A special name "ANY" can be used for <latch-output> to specify
to the mapper that <latch-output> needs not be a signal name in the <cell-logic-function>. This is useful for
describing D-typeflip-flops andlatches. <latch-type> can beACITVE-HIGH orACTIVE-LOW fortransparent
latches; RISING-EDGE orFALLING-EDGE foredge-triggeredflip-flops; orASYNCH forasychronous latches.

<clock-delay-info> is necessary forsynchronous latches andflip-flops. It gives thepropagation delay from theclock
pin to the output Its format is as follows:

CONTROL <clock-pin-name> <input-load> <max-load>
<rise-block-delay> <rise-fanout-delay>
<fall-block-delay> <fall-fanout-delay>

<constraint-info> givesthe setupandhold timeconstraints withrespect to theclocksignal. Theformat is:

CONSTRAINT <pin-name> <setup-time> <hold-time>

If not specified, the values of 0.0 are assumed.

3 Examples

Example 0 of latch specification:

LATCH "d-latch" 80 Q=D;
PIN D NONINV 1 999 1 .2 1 .2
SEQ Q ANY ACTIVE_HIGH
CONTROL CLK 1 999 1 .2 1 .2
CONSTRAINT D 0.2 0.2

Example 1 of <cell-logic-function>:

O = ! (!I1 * 12);

Thisis legal anddefines a NAND gatewith 1 inverted input; it could alsobespecified as

O - II + !I2;

There is noadvantage or disadvantage to eitherrepresentation; onlyoneneed be given.
Example 2 of <cell-logic-function>:
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0 = ! ((II * 12) + ! (13 + 14));

is incorrectly specified. It must be re-written as either

O = •((II * 12) + (!I3 * !I4));

or

O = (!I1 + !I2)*(I3 + 14);

Again, thereis no advantage or disadvantage to eitherrepresentation as they differ only by De Morgan's law. Only
one need be given. Note that there are no other factored forms for this equation.
Example 3 of <cell-logic-function>:

0 = a*b + a*c + b*c;

This is one specification of a majority gate. Another possiblespecification (which IS considereddifferent) is:

0 = a* (b + c) + b*c;

Any permutation of the input variables does not providea new specification; hence, these arethe only two useful
representations fora majoritygate logic function. Both shouldbe providedto the technologymappingprogram, until
further notice.
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