
LECSIM: A LEVELIZED EVENT DRIVEN COMPILED LOGIC
SIMULATOR*

Zhicheng Wang, Peter M. Maurer
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

Abstract
LECSIM is a highly efficient logic simulator which

integrates the advantages of event driven interpretive
simulation and level&d compiled simulation. Two techniques
contribute to the high efficiency. First it employs the zero-
delay simulation model with levelized event scheduling to
eliminate most unnecessary evaluations. Second, it compiles
the central event scheduler into simple local scheduling
segments which reduces the overhead of event scheduling.
Experimental results show that LECSIM runs about 8-77 time
faster than traditional unit-delay event-driven interpretive
simulator. LECSIM also provides the option of scheduling
with respect to individual gates or with respect to fan-out free
blocks. When the circuit is partitioned into fan-out free
blocks, the speed increases by a factor of 2-3. With
partitioning, the speed of LECSIM is only about 1.5-3.4 times
slower than a levelized compiIed simulation for the
combinational circuits we have tested.

1. Introduction
The event driven simulation technique[l] has been used for

many years to implement different types of simulators. The
great success of this algorithm stems from the elegance of the
selective trace approach (i.e. evaluating only the active
components), together with its ability to easily handle
asynchronous designs and timing analysis. Though much
effort has been made in the past two decades to improve the
speed of event driven simulation[2,3], efficiency is still a
major problem. Three factors contribute to the inefficiency of
the algorithm. First, not all the events produced by the
evaluation of active components are necessary to produce
useful output. In unit-delay simulation these events are useful
for detecting hazards and race conditions, but for today’s
highly complex synchronous circuits it is usually simpler to
test the functional behavior of the circuit before performing
hazard analysis. Zero-delay simulation is usually adequate for
high-level functional testing. Our experiments have shown
that unit-delay event driven simulators can generate as many as
26 times more events than necessary for certain types of
circuits. These false events seriously impair the performance
of the simulator. Second, the centralized event scheduler often
introduces an enormous amount of overhead. which is
particularly true when the primitive components are simple and
only require a few instructions to evaluate. A primitive gate,

* This work was supported in part by the Defense Advanced
Research Projects Agency under grant 2114-O33-LO and by
the University of South Florida Center for Microelectronics.

for example, needs only two or three instructions for
evaluation, but it may take hundreds instructions to schedule
its evaluation. Third, almost all event-driven simulators are
interpretive and can not use the optimization techniques of the
compilation process.

While the traditional event driven algorithm continues to
improve[4,5], many researchers have tried to improve the
efficiency by using different methodologies. The demand
driven algorithm employed in BACKSIM[6] is such attempt.
By assigning a time window to each value encountered during
backward traversal, demand driven simulation evaluates the
components only when their values are needed to provide
simulator outputs, and at those simulation time steps where
they are valid. While the demand driven algorithm improves
efficiency by eliminating most unnecessary evaluations, the
recursive back tracking routine employed in demand driven
algorithm incurs a severe penalty, particularly when the circuit
is deep.

The levelized compiled simulation technique takes a
totally different approach 17.81. Instead of translating the
circuit description into internal data structures operated on by a
separate simulation kernel, compiled simulation translates the
circuit description directly into code. The code is arranged by
the levels to ensure that whenever a component is evaluated,
the correct values of its inputs are available. The simulation is
performed by sequentially executing the code, and each
component is evaluated exactly once for every input vector.
Since this approach eliminates the need for event management,
it is extremely efficient. There are, however, problems with
this approach that restrict its usefulness. Levelized compiled
simulation in general lacks the ability to handle asynchronous
circuits which tends to limit its application to combinational
and synchronous circuits. Furthermore, the strict sequential
execution of this approach makes it difficult to perform timing
analysis. An interesting point we would like to mention here
is that the “evaluate everything” nature of levelized compiled
simulation is generally considered a drawback. However, as it
is pointed out in [ll] and confirmed by our experimental
results, levelized compiled simulation is inferior to event
driven interpretive simulation only when the circuit’s activity
is lower than 1%. a situation which rarely occurs in practice.

Although levelized scheduling has traditionally implied a
compiled implementation while event-driven scheduling has
implied an interpretive implementation, researchers have
recently begun to recognize that these concepts are
independent and that there are advantages to various non-
traditional combinations. Some of the possible combinations
are illustrated in Figure 1.

The switch level simulators COSMOS [9] and SLS [lo]
have explored the combination of compiled implementation
and event-driven scheduling. Both simulators gain high
performance by compiling the circuit into code which is then
manipulated by a central scheduler during simulation.
However, they retain the traditional concept of a centralized
event scheduler. HSS/4 [ll] is the fist compiled fault
simulator which incorporates event-driven concept. In addition
to generating the code for block evaluations, it also generates

27th ACM/IEEE Design Automation Conference*
Paper 27.3

@ 1990 IEEE 0738-l 00X1901000610491 $1 .OO 491

http://crossmark.crossref.org/dialog/?doi=10.1145%2F123186.123349&domain=pdf&date_stamp=1991-01-03

code that controls the activation of successor block trees for
later evaluations. Tortle-c [121 provides another efficient
implementation of fully compiled event driven simulation,
together with a hierarchical subcircuit feature to allow
incremental compilation.

Scheduling Algorithms Implementation Techniques
E : Even driven I : Interpretive
L : Levelized C : Compiled

@+a=EventdrivenInterpretive

Levelized Compiled

@ + @= Compiled Event driven

@+@+@= Levelized Event driven Compiled

Figure 1. The structure of Simulators

In this paper, we present a new simulator LECSIM, a
LEvelized event driven Compiled SIMulator. In addition to
combining event driven scheduling with a compiled
implementation, LECSIM also employs a network levelization
algorithm and zero-delay simulation model to suppress most
unnecessary events. Furthermore, LECSIM generates a single
piece of code for most Strongly Connected Components. A
segment of a circuit is strongly connected if it is connected,
and the output of every gate in the segment depends on the
output of every other gate in the segment. A strongly
connected component is a maximal strongly connected
segment of a circuit. That is, adding one more gate to the
segment would cause it to become nor strongly connected.

The code generated by LECSIM for a strongly connected
component contains its own iteration control mechanism
which limits the iteration to a small fragment of code.
Consequently, the event scheduling overhead is reduced and the
overall scheduling is simplified. These techniques, together
with an efficient implementation of the event insertion and
dispatch algorithms, gives LECSIM a substantial performance
advantage over both interpretive algorithms and compiled
event-driven algorithms based on the unit-delay model.

2. The Zero Delay Model and Levelizatlon

Unit delay simulation model is widely used in event driven
simulators when accurate timing analysis is not needed. While
this model simplifies the process of event scheduling, it often
generates many unnecessary evaluations. Although some of
these unnecessary evaluations can be used to derive a rough
analysis of the hazards and race conditions in a circuit, there
are many situations in which this analysis is not required. In
such cases the unnecessary evaluations do nothing but add to
the overhead of the simulation.

Figure 2 illustrates how unnecessary evaluations occur.
Assume the initial states on all the nets in the circuit are OS and
the input vector 1111 is applied to the circuit at time 0. A unit
delay event driven simulator will complete the simulation in 3
time steps and 5 evaluations as shown in the table. It is
obvious that the evaluations on G2.G3 in time 1 are
unnecessary and that the circuit can be simulated using only 3
evaluations. This simple example accounts for the fact that
unit-delay event-driven simulators can generate as many as 26
times more events than necessary (in our experiments) for
some purely combinational circuits.

Tiie

Init.

t

0

1

2

3

A B C D Yl Y2 Y3 Gates to Evaluate

0000000

1111000

1111100

1111110

1111111

Gl G2 G3

G2

G3

Figure 2. The Source of False Events.

The levelization algorithm [7] in conjunction with zero
delay simulation model handles this problem effectively. The
levelization process assigns Gl to level 1, G2 to level 2 and
G3 to level 3. If the simulation is ordered strictly by level,
only 3 evaluations are needed to obtain the correct result.
Though this approach has been widely used in levelized
compiled simulation, the following problems must be solved
before it can be adapted to event driven simulation.

1. The levelization technique can not be applied to circuits
containing feedback paths.

2. Zero delay components may create ser:ious problems such
as infinite loops in event driven simulation 121.

LECSIM solves the two problems by pre-processing the
circuit in the following way. A standard depth fist search
algorithm is used to identify strlongly connected
components[151. Within a strongly connected component,
each fanout branch of each net is identified as either a forward
path or a feedback path. (This identification is a natural
byproduct of the depth first search algorithm.) LECSIM then
levelizes each strongly connected component, ignoring the
feedback paths. Although strictly speaking one strongly
connected component cannot be embedded in another, it is
sometimes advantageous to treat very large strongly connected
components hierarchically. This is especially true when a
strongly connected component contains some feedback paths
that are considerably longer than others. For example, the
implementation of a complex finite state machine might have
several very long feedback paths in its control section, and
several short feedback paths in the flip-flops that maintain the
current state. In such cases it is advantageous to break the long
feedback paths first and then identify the strongly connected
components of the resultant circuit. At the lowest level of the
hierarchy, LECSIM generates one block of code for all gates in
the strongly connected component. An example of this type
of strongly connected component is illustrated in Figure 3.
Note that the code contains its own iteration control. The
iteration stops when the strongly connected component
stablizes or when a predetermined limit is reached. The
iteration limit is determined by two ways. If a strongly
connected component has m feedback arcs, and m is small,
then the limit is set equal to 2m+l. If m i:r larger than a certain
number (currently 4). a user-specified default is used (currently
20).

Paper 27.3

492

(
int x0;
int count=O;
do t

x0 = Y2;
Y 1 = !(A&xO);
Y2 = !(Y l&B);
count++;

) while (!(xO==Y2) && count<3);
if (count==3 && xO!=Y2) unstable-error{);

1
Figure 3. A Strongly Connected Component and Its Code.

The advantage of local loop control is that the iterations
are performed in small fragments of code and do not involve
queue insertion and event dispatch operations, which
significantly reduces scheduling overhead. In the case where a
strongly connected component contains a large number of
gates or other strongly connected components, however, this
approach may not efficient. For this type of strongly
connected component, LECSIM uses a top level loop control
scheme, which will he discussed in detail in the next section.

3. The Scheduling Algorithm

In the following discussion, we use the term “block” to
represent the basic components to be scheduled, A block may
contain a single gate, or it may be a cluster of gates such as an
strongly connected component. Each block has an index
number to indicate its lev,el, which will be used for the block
insertion operation.

The scheduling algorithm employed in LECSIM uses the
concept of level-mapping in conjunction with a set of circular
lists. The data structure used by the scheduler is organized by
levels, as illustrated in Figure 4. This data structure is created
at compile time rather than being allocated dynamically.

Queue tail pointer array Queue head pointer array

Level 1

Level 2

I I

Levelm --I

Figure 4. The data structure for the scheduling algorithm.

In Figure 4, the shaded boxes contain the blocks which
need to be evaluated. Each level consists of a circular list and a
pair of pointers. The circular list serves as the event queue for
that level and only those blocks with the proper level index
may be inserted into it. Each list contains ni+l slots, where ni
is the total number of blocks in level i. The queue head pointer
points to the empty space in the list for next insertion and the
queue tail pointer points to the block in the list which will be
dispatched next. When the two pointers are the same, the queue
for that level is empty.

The scheduling process involves a number of iterations,
as illustrated in Figure 5. Each iteration consists of two level
scanning operations. On top level, the scheduler scans
through the queues by level, starting from level 1. At each
level, it scans the circular list and performs all necessary
operations such as evaluation and new event insertion. The
unstable flag is set when one or more blocks are inserted into
queues which have already been scanned during this iteration.
This condition indicates that the circuit is not yet stable and
another iteration is required. This process continues until the
circuit reaches stable state or a user-specified iteration limit
has been exceeded.

initial state : queue[i] contains the blocks in level i
which need to be evaluated;

unstable = 1;
count = 0;
while (unstable = 1 and count < iteration-limit)
t

unstable = 0;
count = count + 1;
for (current-level = 1 to m)
(

for (each block in queue[cturent~level])
I

evaluate the current block,
if (new event generated)
t

update the output of the current block;
for (each fan-out block of the current block)
I

(index denotes the level of the fan-out block)
if (the block is not in the queue[index]
I

insert it into queuelindex]
if (index < current-level)
t

unstable = 1;
1

1
1

Figure 5. The scheduling algorithm

Though similar techniques have been proposed 151, this
algorithm has the following distinguished features. First, the
one pass levelized event scheduling technique, in conjunction
with zero delay simulation, eliminates most of the unnecessary
evaluations encountered in a two pass unit delay simulation.
Second, the circular list structure simplifies event
manipulation. Event insertions and dispatches involve only
about 12 machine instructions. Third, small-sized tightly-
coupled feedback loops are hidden within the strongly
connected component code as discussed in section 2. These
strongly connected components are presented to scheduler as if
they were normal gates and will not induce top-level iterations.
The only loops which will cause top-level iteration are those

Paper 27.3

493

which contain many gates or contain other strongly connected
components. Our experience indicates that these large loops
usually require fewer iterations than the small-sized tightly
coupled ones. In fact, we have observed that many circuits
need only one iteration to reach stable state.

4 Implementation

Since the evaluation of a normal gate requires only a few
instructions, an efficient implementation of the scheduling
algorithm is critical for the overall performance of simulator.
For event driven compiled simulation, the scheduling process
involves scheduling the execution of a set of pre-generated
routines. These routines are independent of each other and
each represents a single block. This structure implies
subroutine calls, which are used successfully in COSMOS where
the evaluation of each routine takes a substantial amount of
time. For gate-level simulation, however, the overhead of
stack operations during subroutine calls becomes significant
as compared to the execution time of the sub-routine. The most
efficient implementation for gate level simulation is to make
the starting address of each routine available so that the
scheduler can jump to the routine directly. This approach is
similar to threaded code 1131 and has been used in SLS and
Tortle-c. One difficulty of employing this approach is that it
is necessary to store the routine addresses into variables which
is quite difficult to do in a high-level programming language
such as C. One could, of course, use assembly language for the
output of the circuit-compiler, but this would severely impair
the portability of the compiler. We have adopted a middle-of-
the-road approach to simplicity and portability. The output of
LECSIM is primarily C code with a few lines of assembly code
inserted to implement the dispatcher. Although this impairs
the portability of the compiler, the amount of generated
assembly code is small, and can be quickly changed to adapt
the compiler to a new environment. A sample of the generated
code is illustrated in Figure 6.

The circuit of Figure 6 contains five blocks and three
levels. The data structure consists of five integer arrays: the
block address array ad, block flag array fg, the queue head
pointer array qh, the queue tail pointer array qr and the array bq
which reserves the memory space for tluee circular lists.

The code generated for this circuit contains three parts.
The initialization procedure, which is not shown in Figure 6, is
called at the beginning of simulation. It loads in the block
addresses into array ad and constructs the circular lists. It also
inserts all the blocks into queues and simulates circuit once to
establish the initial state. The dispatcher is implemented in
MC68020 assembly code (in SUN assembler format). The
assembly code is inserted into the C program by calling C
built-in function “asm.” The dispatcher performs the task of
scanning queue[i], the circular list of level i. The level is
controlled by a level scanning routine, and is passed to
dispatcher by loading address registers a4 and a3 with the queue
head pointer and queue tail pointer respectively. The dispatcher
checks to see if the queue is empty by comparing the contents
of a4 and a3. If the queue is not empty, then it fetches the
address of the block pointed to by the queue tail pointer,
updates the queue tail pointer and then jumps to the block to be
evaluated. The block routine, as shown in Figure 6 for the
block BKO, contains both evaluation code and fan-out
processing code. It first removes the block being evaluated
from the queue by setting the its flag to 0. It then evaluates the
block and if a new event has been generated, it processes any
fan-out blocks. A fan-out block will be inserted into the queue
indexed by its level if it is not already in the queue. When this
process finishes, the program jumps to the dispatcher and is
ready for next block.

Ci

im d51, WI, qW% stW bq1161;

DISP: asm(“cmp1 a4,a3W);
asmrjeq BKCW);
asm(“mov1 a3@ ,aOW);
asm(“mov1 a3@(4)&M);
asm(lljra aC@b”);
asm(“KKO:b”);

BKO: ‘(fg+O) = 0;
new=AAB;
if (YO != new) (

YO = new;
if (*(fg+2) == 0) (

*(fg+2) = 1;
qhp = qh+l;
*((int *)*qhp) = *(ad+l);
*(qhp) = *((int *)*qhp+l);

I
if (*(fg+3) == 0) (

*(fg+3) = 1;
qhp = qh+l;
*((int *)*qhp) = *(ad+3);
*(qhp) = *((int *)*qhp+ 1);

I
1
goto DISP;

Figure 6. A Full Adder and Part of Its Code.

One obvious advantage of the compiled implementation
of the event scheduler is its simplicity. This comes in two
ways. First , the indices to the arrays are pre-calculated so that
multi-indirect addressing is eliminated. Second, some
simplification can be done during code generation. For
example, the scheduling algorithm as shown in Figure 5
requires level checking after each block insertion to see if the
unstable flag needs to be set. In an interpretive
implementation, this requires at least two instructions to test
the condition and one instruction to set the flag. In our
implementation. the checking operation is done at code
generation time. If the fan-out block leve.1 index is not lower
than the current block level, which is usually the case, no level
checking code will be generated. As a result, the event
scheduling operation for most blocks requires only five
machine instructions for the dispatcher and seven instructions
for each fan-out. This contributes significantly to the
efficiency of LECSIM.

Paper 27.3
494

5. Experimental Results
Ten small to medium size benchmark circuits from

ISCASt were used to evaluate the performance of LECSIM.
These circuits have been used frequently to benchmark the
performance of ATPG packages and simulators. All circuits are
combinational and their characteristics are shown in Figure 7.
Two versions of LECSIM have been tested. The fist treats
singles gate as the primary elements and the second, called
LECSIMp, treats fan-out-free blocks as the primary elements.
These blocks are obtained by invoking a fan-out-free
partitioning procedure in LECSIMp during circuit compilation.
The characteristics of the partitioned circuits are shown in
Figure 7.

Fan-out free partitioning was introduced to reduce the
amount of scheduling time for the lowest-level components of
the circuit. For example, suppose a fanout-free block contains
3 gates. Without partioning each of these gates must be
scheduled individually, With partitioning the block
containing the three gates will be scheduled as a unit. reducing
the scheduling time by 66% for that block.

Circuit
~432
c499
c880
cl355
cl908
~2670
c3540
c5315
~6288
~7552

No Par
Gates
160
202
383
546
880

1269
1669
2307
2416
3513

oning
Levels

17

:i
24
40
32
47
49

124
43

With Pa: tioning
Blocks Levels

60 13
58 5

105 17
258 15
377 38
539 29
555 44
806 35

1458 123
1331 38

Figure 7. The ten ISCS85 benchmark circuits

The performance comparison between LECSIM and two
other simulation packages, FHDL and EUSIM, is summarized in
Figure 8. FHDL is a traditional levelized compiled logic
simulator and EUSIM is a traditional unit delay, two-pass event
driven interpretive logic simulator. Both simulators were
developed from our previous research. All tests were performed
on SUN 31260 with 12 Mbyte of main memory. Each circuit
was simulated with 5000 randomly generated vectors. The
results of the comparison are listed in Figure 8. To provide
accurate comparison of the algorithms and implementation
techniques, we list onty the net evaluation time. These figures
do not include the time required to read vectors and print output.

The test results show that LECSIM runs about 8 to 77
times faster than EUSIM. The zero delay model and levelized
event scheduling make significant contribution to the
performance. On the average, the number of gates evaluated by
LECSIM is only half to one third of that evaluated by EUSIM.
For one particular example, the C6288 which has 124 levels,
only 1 out of 26 gates are evaluated by LECSIM as compared to
EUSIM. The rest of the performance improvement is due to the
superiority of the compilation technique employed by LECSIM
over the interpretive technique employed by EUSIM. As we
expected, the event scheduling process, though efficiently
implemented, introduces substantial amount of overhead.
While LECSIM evaluates only about 50 to 60 percent of all
gates, it is still 3 to 6 times slower than FHDL, which
evaluates all gates for each test vector. This scheduling
overhead can be reduced if we partition the circuits into fan-out-
free blocks and schedule the events on the block level.
Although LECSIMp evaluates more gates than LECSIM, it
operates only about 1.5 to 3.4 times slower than FHDL.

Run Ti

128
219
309
500
707
875

1347
1487

,2133

: in Second
LBCSIMp

.I34
141
330
372
605
892

1321
1684
1586
2603

213
356
763

1466
1550
2318
3815

39032
6275

FHDL
160
202
383
546
880

1269
1669
2307
2416
3513

Average Evaluations per vector
Circuit 1 LECSIM 1 LECSIMp 1 EUSIM
~432 1 3.5 1 2.2 I 41.7
c499 4.2 2.3 44.2
c880 7.4 4.3 79.6
cl355 17.0 8.8 171.7
cl908 32.0 16.2 399.1
~2670 47.6 27.2 432.2
c3540 61.4 36.8 560.7
c5315 100.1 56.2 877.1
~6288 117.6 90.6 9129.0
~7552 164.0 95.6 1389.0

FHDL
1.4
1.5
3.2
5.0
7.1
9.8

12.1
16.5
30.1
39.0

Notes:
1. LECSIMp is LECSIM with fan-out-free partitioning.
2, EUSIM is a unit delay event driven interpretive simulator.
3. FHDL is a levelized compiled simulator.

Figure 8. Performance Comparison.

For EUSIM, the event-driven interpretetive unit-delay
simulator, the average activity rate for the ten benchmark
circuits is about 22% with random stimuli. This activity rate
was calculated by first counting the number of gates that would
be simulated by EUSIM in the worst case and dividing this
number into the actual number of gates simulated. The number
of gates simulated in the worst case was obtained by simulating
the circuit and forcing each gate-evaluation to produce an event
regardless of whether the output had changed. The average
activity rates fox LECSIM and LECSIMp are higher, 58% and
66% respectively for random stimuli. The activity rate of
LECSIMp was measured with respect to blocks rather than
gates. These figures suggest that LECSIM will out perform
FHDL when the activity rate is less than lo-19%, and that
LECSIMp will out perform FHDL when the activity rate is less
than 19~44%. Therefore, we feek that LECSIM, and especially
LECSIMp, will exhibit performance comparable to that of a
level&d compiled simuP;rtor for many applications. On the
other hand, EUSIM will out perform FHDL only when the
activity rate is lower than 0.2-0.9%. an activity rate which we
seldom expect to see in practice.

The major problems with LECSIM are that it requires more
parse and compile time than an interpretive simulator, and it
produces more generated code than a levelized compiled code
simulator. In addition to the circuit parsing time, which is the
same as for EUSIM, LECSIM consumes a significant amount of
time in compiling the generated C program. This indicates that
LECSIM is inefficient for the applications where only a few
input vectors are simulated after each circuit modification.
Figure 9 gives the parse and compile times for LECSIM and
EUSIM, while Figure 10 gives the size of the generated code for
LECSIM, LECSIMp, and FHDL.

Paper 27.3

495

Parse and compile time could probably be reduced through
the use of incremental compilation[121. Instead of
recompiling whole circuit after each modification, incremental
compilation recompiles only the part of circuit which has been
changed. We have investigated this technique during the
development of FHDL [14], and we believe that it will be
readily adaptable to LECSIM.

At the time of this writing, we have not yet fully examined
LECSIM’s performance on sequential circuits.

c499 1.2
c880 2.5
cl355 3.5
cl908 4.7
~2670 8.1
c3540 10.6
c5315 17.1
~6288 18.9

7.8
13.8
63.6
28.4
42.6
49.7
76.2

380.0

9.0
16.3
67.1
33.1
50.7
59.1
93.3

399.0

:::
3.0
4.1
7.5
9.4

15.2
17.2

~7552 1 28.0 1 553.0 1 581.0 1 25.4
Note: Time is measured in seconds on a SUN 3/260.

Figure 9. Circuit processing times.

LECSrM EUSIM
Compile [Total Parse

7.4 I 8.4 0.9

1 LECSlM I LECSLMp 1 FHDL
~432 1 51 41 I 32
c499 61 50 33
c880 106 76 41
cl355 135 104 57
cl908 184 125 82
~2670 278 197 117
c3540 334 222 124
c5315 483 321 184
~6288 526

I
417

1
208

~7552 683 443 270
Note: Numbers are size of object module in kilobytes.

Figure 10. Circuit memory requirements.

6 Conclusion and Future Work

LECSJM is a levelized event driven compiled logic
simulator. Et differs from traditional event driven interpretive
simulators in that it employs levelization and compilation
techniques to achieve high performance. It differs from
traditional levelized compiled simulators in that it performs
the simulation in a selective-trace, event-driven fashion. The
experimental results demonstrate the superiority of this
technique. LECSIM runs about 8 to 77 times faster than a
traditional unit-delay event-driven interpretive simulator.
While LECSIM is still slower than a traditional levelized
compiled simulator (assuming that the same number of gates
are simulated in each case). its event-driven approach will
allow it to out perform levelized compiled simulators when
circuit activity is low.

Although the techniques presented in this paper are
oriented toward high-performance zero-delay simulation, we
feel that they are readily adaptable to multi-delay simulation.
In any case, the compiled implementation of event scheduler
provides an efficient alternative to the central event
management scheme used in most event driven simulators. We
are presently extending LECSIM to include a multi-delay
simulation ability which we hope will provide performance
improvements comparable to those presented in this paper.

REFERENCES

1. M. A. Breuer, A. D. Friedman, Diagnosi,r and Reliable
Design of Digital Systems, Computer Science Press,
Woodland Hills, CA, 1976.

2. E. G. LJlrich, “Event Manipulation for Discrete Simulations
Requiring Large Numbers of Events, ” Journal of the ACM,
Vol. 21, No. 9, Sept., 1978, pp. 777-85.

3. E. G. Ulrich. D. Herbert, “Speed and Accuracy in Digital
Network Simulation based on Structural Modeling,”
Proceedings of the 19th Design Automation Conference,
1982, pp.587-93.

4. E. G. Ulrich, “Concurrent Simulation at the
Switch,Gate.and Register Levels,” Proceedings of the 1985
International Test Conference, 1985, pp.703-9.

5. S. Gai, F. Somenzi, M. Spalla, “Fast and Coherent
Simulation with Zero Delay Elements,” IEEE Trans. on
Computer-Aided Design, Vol. 6, No. 1, Jan., 1987, pp.85-
91.

6. S. P. Smith, M. R. Mercer. B. Brock, “Demand Driven
Simulation: BACKSIM”. Proceedings of the 24th Design
Automation Conference, 1987. pp.181-8’7.

7. L. Wang, N. Hoover, E. Porter, J. Zasio, “SSIM: A
Software Levelized Compiled- Code Simulator,”
Proceedings of the 24th Design Automation Conference,
1987, pp.2-8.

8. C. Hansen. “Hardware Logic Simulation by Compilation,”
Proceedings of 25th Design Automation Conference,
1988, pp.712-15.

9. R. E. Bryant, D. Beatty, K. Brace, K. Cho, T. Sheffler,
“COSMOS: A Compiled Simulator for MOS Circuits,”
Proceedings of the 24th Design Automation Conference,
1987, pp.9-16.

10. 2. Barzilai, D. K. Beece, L. M. Huisman, V. S. Iyengar, G.
M. Silberman, “SLS-A Fast Switch-Level Simulator,” IEEE
Trans. on Computer-Aided Design, Vol. 7, No. 8, August,
1988, pp. 838-49.

11. 2. Barzilai, J. L. Carter. B. K. Rosen, J. D. Rutledge,
“HSS-A High-Speed Simulator,” IEEE Trans. on Computer-
Aided Design, Vol. 6, No. 4, July, 1987, pp. 601-16.

12. D. M. Lewis, “Hierarchical Compiled Event-Driven Logic
Simulation,” proceeding of ICCAD-89.

13. J. R. Bell, ‘Threaded Code,” Journal ojF the ACM, Vol. 16,
No. 6, June., 1973, pp. 777-85.

14. P. M. Maurer, Z. Wang, C. D. Morency, ‘Techniques for
Multi-Level Compiled Simulation,” University of South
Florida, Department of Computer Science and Engineering
Technical Report , CSE-89-04.

15. A. V. Aho. J. E. Hopcoff, J. D. Ullman, Data Structures
and Algorithms, Addison-Wesley, Reading, MA, 1983.

Paper 27.3

496

