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Abstract 
LECSIM is a highly efficient logic simulator which 

integrates the advantages of event driven interpretive 
simulation and level&d compiled simulation. Two techniques 
contribute to the high efficiency. First it employs the zero- 
delay simulation model with levelized event scheduling to 
eliminate most unnecessary evaluations. Second, it compiles 
the central event scheduler into simple local scheduling 
segments which reduces the overhead of event scheduling. 
Experimental results show that LECSIM runs about 8-77 time 
faster than traditional unit-delay event-driven interpretive 
simulator. LECSIM also provides the option of scheduling 
with respect to individual gates or with respect to fan-out free 
blocks. When the circuit is partitioned into fan-out free 
blocks, the speed increases by a factor of 2-3. With 
partitioning, the speed of LECSIM is only about 1.5-3.4 times 
slower than a levelized compiIed simulation for the 
combinational circuits we have tested. 

1. Introduction 
The event driven simulation technique[l] has been used for 

many years to implement different types of simulators. The 
great success of this algorithm stems from the elegance of the 
selective trace approach (i.e. evaluating only the active 
components), together with its ability to easily handle 
asynchronous designs and timing analysis. Though much 
effort has been made in the past two decades to improve the 
speed of event driven simulation[2,3], efficiency is still a 
major problem. Three factors contribute to the inefficiency of 
the algorithm. First, not all the events produced by the 
evaluation of active components are necessary to produce 
useful output. In unit-delay simulation these events are useful 
for detecting hazards and race conditions, but for today’s 
highly complex synchronous circuits it is usually simpler to 
test the functional behavior of the circuit before performing 
hazard analysis. Zero-delay simulation is usually adequate for 
high-level functional testing. Our experiments have shown 
that unit-delay event driven simulators can generate as many as 
26 times more events than necessary for certain types of 
circuits. These false events seriously impair the performance 
of the simulator. Second, the centralized event scheduler often 
introduces an enormous amount of overhead. which is 
particularly true when the primitive components are simple and 
only require a few instructions to evaluate. A primitive gate, 
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for example, needs only two or three instructions for 
evaluation, but it may take hundreds instructions to schedule 
its evaluation. Third, almost all event-driven simulators are 
interpretive and can not use the optimization techniques of the 
compilation process. 

While the traditional event driven algorithm continues to 
improve[4,5], many researchers have tried to improve the 
efficiency by using different methodologies. The demand 
driven algorithm employed in BACKSIM[6] is such attempt. 
By assigning a time window to each value encountered during 
backward traversal, demand driven simulation evaluates the 
components only when their values are needed to provide 
simulator outputs, and at those simulation time steps where 
they are valid. While the demand driven algorithm improves 
efficiency by eliminating most unnecessary evaluations, the 
recursive back tracking routine employed in demand driven 
algorithm incurs a severe penalty, particularly when the circuit 
is deep. 

The levelized compiled simulation technique takes a 
totally different approach 17.81. Instead of translating the 
circuit description into internal data structures operated on by a 
separate simulation kernel, compiled simulation translates the 
circuit description directly into code. The code is arranged by 
the levels to ensure that whenever a component is evaluated, 
the correct values of its inputs are available. The simulation is 
performed by sequentially executing the code, and each 
component is evaluated exactly once for every input vector. 
Since this approach eliminates the need for event management, 
it is extremely efficient. There are, however, problems with 
this approach that restrict its usefulness. Levelized compiled 
simulation in general lacks the ability to handle asynchronous 
circuits which tends to limit its application to combinational 
and synchronous circuits. Furthermore, the strict sequential 
execution of this approach makes it difficult to perform timing 
analysis. An interesting point we would like to mention here 
is that the “evaluate everything” nature of levelized compiled 
simulation is generally considered a drawback. However, as it 
is pointed out in [ll] and confirmed by our experimental 
results, levelized compiled simulation is inferior to event 
driven interpretive simulation only when the circuit’s activity 
is lower than 1%. a situation which rarely occurs in practice. 

Although levelized scheduling has traditionally implied a 
compiled implementation while event-driven scheduling has 
implied an interpretive implementation, researchers have 
recently begun to recognize that these concepts are 
independent and that there are advantages to various non- 
traditional combinations. Some of the possible combinations 
are illustrated in Figure 1. 

The switch level simulators COSMOS [9] and SLS [lo] 
have explored the combination of compiled implementation 
and event-driven scheduling. Both simulators gain high 
performance by compiling the circuit into code which is then 
manipulated by a central scheduler during simulation. 
However, they retain the traditional concept of a centralized 
event scheduler. HSS/4 [ll] is the fist compiled fault 
simulator which incorporates event-driven concept. In addition 
to generating the code for block evaluations, it also generates 
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code that controls the activation of successor block trees for 
later evaluations. Tortle-c [ 121 provides another efficient 
implementation of fully compiled event driven simulation, 
together with a hierarchical subcircuit feature to allow 
incremental compilation. 

Scheduling Algorithms Implementation Techniques 
E : Even driven I : Interpretive 
L : Levelized C : Compiled 

@+a=EventdrivenInterpretive 

Levelized Compiled 

@ + @= Compiled Event driven 

@+@+@= Levelized Event driven Compiled 

Figure 1. The structure of Simulators 

In this paper, we present a new simulator LECSIM, a 
LEvelized event driven Compiled SIMulator. In addition to 
combining event driven scheduling with a compiled 
implementation, LECSIM also employs a network levelization 
algorithm and zero-delay simulation model to suppress most 
unnecessary events. Furthermore, LECSIM generates a single 
piece of code for most Strongly Connected Components. A 
segment of a circuit is strongly connected if it is connected, 
and the output of every gate in the segment depends on the 
output of every other gate in the segment. A strongly 
connected component is a maximal strongly connected 
segment of a circuit. That is, adding one more gate to the 
segment would cause it to become nor strongly connected. 

The code generated by LECSIM for a strongly connected 
component contains its own iteration control mechanism 
which limits the iteration to a small fragment of code. 
Consequently, the event scheduling overhead is reduced and the 
overall scheduling is simplified. These techniques, together 
with an efficient implementation of the event insertion and 
dispatch algorithms, gives LECSIM a substantial performance 
advantage over both interpretive algorithms and compiled 
event-driven algorithms based on the unit-delay model. 

2. The Zero Delay Model and Levelizatlon 

Unit delay simulation model is widely used in event driven 
simulators when accurate timing analysis is not needed. While 
this model simplifies the process of event scheduling, it often 
generates many unnecessary evaluations. Although some of 
these unnecessary evaluations can be used to derive a rough 
analysis of the hazards and race conditions in a circuit, there 
are many situations in which this analysis is not required. In 
such cases the unnecessary evaluations do nothing but add to 
the overhead of the simulation. 

Figure 2 illustrates how unnecessary evaluations occur. 
Assume the initial states on all the nets in the circuit are OS and 
the input vector 1111 is applied to the circuit at time 0. A unit 
delay event driven simulator will complete the simulation in 3 
time steps and 5 evaluations as shown in the table. It is 
obvious that the evaluations on G2.G3 in time 1 are 
unnecessary and that the circuit can be simulated using only 3 
evaluations. This simple example accounts for the fact that 
unit-delay event-driven simulators can generate as many as 26 
times more events than necessary (in our experiments) for 
some purely combinational circuits. 
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Figure 2. The Source of False Events. 

The levelization algorithm [7] in conjunction with zero 
delay simulation model handles this problem effectively. The 
levelization process assigns Gl to level 1, G2 to level 2 and 
G3 to level 3. If the simulation is ordered strictly by level, 
only 3 evaluations are needed to obtain the correct result. 
Though this approach has been widely used in levelized 
compiled simulation, the following problems must be solved 
before it can be adapted to event driven simulation. 

1. The levelization technique can not be applied to circuits 
containing feedback paths. 

2. Zero delay components may create ser:ious problems such 
as infinite loops in event driven simulation 121. 

LECSIM solves the two problems by pre-processing the 
circuit in the following way. A standard depth fist search 
algorithm is used to identify strlongly connected 
components[ 151. Within a strongly connected component, 
each fanout branch of each net is identified as either a forward 
path or a feedback path. (This identification is a natural 
byproduct of the depth first search algorithm.) LECSIM then 
levelizes each strongly connected component, ignoring the 
feedback paths. Although strictly speaking one strongly 
connected component cannot be embedded in another, it is 
sometimes advantageous to treat very large strongly connected 
components hierarchically. This is especially true when a 
strongly connected component contains some feedback paths 
that are considerably longer than others. For example, the 
implementation of a complex finite state machine might have 
several very long feedback paths in its control section, and 
several short feedback paths in the flip-flops that maintain the 
current state. In such cases it is advantageous to break the long 
feedback paths first and then identify the strongly connected 
components of the resultant circuit. At the lowest level of the 
hierarchy, LECSIM generates one block of code for all gates in 
the strongly connected component. An example of this type 
of strongly connected component is illustrated in Figure 3. 
Note that the code contains its own iteration control. The 
iteration stops when the strongly connected component 
stablizes or when a predetermined limit is reached. The 
iteration limit is determined by two ways. If a strongly 
connected component has m feedback arcs, and m is small, 
then the limit is set equal to 2m+l. If m i:r larger than a certain 
number (currently 4). a user-specified default is used (currently 
20). 
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( 
int x0; 
int count=O; 
do t 

x0 = Y2; 
Y 1 = !(A&xO); 
Y2 = !(Y l&B); 
count++; 

) while (!(xO==Y2) && count<3); 
if (count==3 && xO!=Y2) unstable-error{); 

1 
Figure 3. A Strongly Connected Component and Its Code. 

The advantage of local loop control is that the iterations 
are performed in small fragments of code and do not involve 
queue insertion and event dispatch operations, which 
significantly reduces scheduling overhead. In the case where a 
strongly connected component contains a large number of 
gates or other strongly connected components, however, this 
approach may not efficient. For this type of strongly 
connected component, LECSIM uses a top level loop control 
scheme, which will he discussed in detail in the next section. 

3. The Scheduling Algorithm 

In the following discussion, we use the term “block” to 
represent the basic components to be scheduled, A block may 
contain a single gate, or it may be a cluster of gates such as an 
strongly connected component. Each block has an index 
number to indicate its lev,el, which will be used for the block 
insertion operation. 

The scheduling algorithm employed in LECSIM uses the 
concept of level-mapping in conjunction with a set of circular 
lists. The data structure used by the scheduler is organized by 
levels, as illustrated in Figure 4. This data structure is created 
at compile time rather than being allocated dynamically. 

Queue tail pointer array Queue head pointer array 

Level 1 

Level 2 

I I 

Levelm --I 

Figure 4. The data structure for the scheduling algorithm. 

In Figure 4, the shaded boxes contain the blocks which 
need to be evaluated. Each level consists of a circular list and a 
pair of pointers. The circular list serves as the event queue for 
that level and only those blocks with the proper level index 
may be inserted into it. Each list contains ni+l slots, where ni 
is the total number of blocks in level i. The queue head pointer 
points to the empty space in the list for next insertion and the 
queue tail pointer points to the block in the list which will be 
dispatched next. When the two pointers are the same, the queue 
for that level is empty. 

The scheduling process involves a number of iterations, 
as illustrated in Figure 5. Each iteration consists of two level 
scanning operations. On top level, the scheduler scans 
through the queues by level, starting from level 1. At each 
level, it scans the circular list and performs all necessary 
operations such as evaluation and new event insertion. The 
unstable flag is set when one or more blocks are inserted into 
queues which have already been scanned during this iteration. 
This condition indicates that the circuit is not yet stable and 
another iteration is required. This process continues until the 
circuit reaches stable state or a user-specified iteration limit 
has been exceeded. 

initial state : queue[i] contains the blocks in level i 
which need to be evaluated; 

unstable = 1; 
count = 0; 
while (unstable = 1 and count < iteration-limit) 
t 

unstable = 0; 
count = count + 1; 
for (current-level = 1 to m) 
( 

for (each block in queue[cturent~level]) 
I 

evaluate the current block, 
if (new event generated) 
t 

update the output of the current block; 
for (each fan-out block of the current block) 
I 

(index denotes the level of the fan-out block) 
if (the block is not in the queue[index] 
I 

insert it into queuelindex] 
if (index < current-level) 
t 

unstable = 1; 
1 

1 
1 

Figure 5. The scheduling algorithm 

Though similar techniques have been proposed 151, this 
algorithm has the following distinguished features. First, the 
one pass levelized event scheduling technique, in conjunction 
with zero delay simulation, eliminates most of the unnecessary 
evaluations encountered in a two pass unit delay simulation. 
Second, the circular list structure simplifies event 
manipulation. Event insertions and dispatches involve only 
about 12 machine instructions. Third, small-sized tightly- 
coupled feedback loops are hidden within the strongly 
connected component code as discussed in section 2. These 
strongly connected components are presented to scheduler as if 
they were normal gates and will not induce top-level iterations. 
The only loops which will cause top-level iteration are those 
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which contain many gates or contain other strongly connected 
components. Our experience indicates that these large loops 
usually require fewer iterations than the small-sized tightly 
coupled ones. In fact, we have observed that many circuits 
need only one iteration to reach stable state. 

4 Implementation 

Since the evaluation of a normal gate requires only a few 
instructions, an efficient implementation of the scheduling 
algorithm is critical for the overall performance of simulator. 
For event driven compiled simulation, the scheduling process 
involves scheduling the execution of a set of pre-generated 
routines. These routines are independent of each other and 
each represents a single block. This structure implies 
subroutine calls, which are used successfully in COSMOS where 
the evaluation of each routine takes a substantial amount of 
time. For gate-level simulation, however, the overhead of 
stack operations during subroutine calls becomes significant 
as compared to the execution time of the sub-routine. The most 
efficient implementation for gate level simulation is to make 
the starting address of each routine available so that the 
scheduler can jump to the routine directly. This approach is 
similar to threaded code 1131 and has been used in SLS and 
Tortle-c. One difficulty of employing this approach is that it 
is necessary to store the routine addresses into variables which 
is quite difficult to do in a high-level programming language 
such as C. One could, of course, use assembly language for the 
output of the circuit-compiler, but this would severely impair 
the portability of the compiler. We have adopted a middle-of- 
the-road approach to simplicity and portability. The output of 
LECSIM is primarily C code with a few lines of assembly code 
inserted to implement the dispatcher. Although this impairs 
the portability of the compiler, the amount of generated 
assembly code is small, and can be quickly changed to adapt 
the compiler to a new environment. A sample of the generated 
code is illustrated in Figure 6. 

The circuit of Figure 6 contains five blocks and three 
levels. The data structure consists of five integer arrays: the 
block address array ad, block flag array fg, the queue head 
pointer array qh, the queue tail pointer array qr and the array bq 
which reserves the memory space for tluee circular lists. 

The code generated for this circuit contains three parts. 
The initialization procedure, which is not shown in Figure 6, is 
called at the beginning of simulation. It loads in the block 
addresses into array ad and constructs the circular lists. It also 
inserts all the blocks into queues and simulates circuit once to 
establish the initial state. The dispatcher is implemented in 
MC68020 assembly code (in SUN assembler format). The 
assembly code is inserted into the C program by calling C 
built-in function “asm.” The dispatcher performs the task of 
scanning queue[i], the circular list of level i. The level is 
controlled by a level scanning routine, and is passed to 
dispatcher by loading address registers a4 and a3 with the queue 
head pointer and queue tail pointer respectively. The dispatcher 
checks to see if the queue is empty by comparing the contents 
of a4 and a3. If the queue is not empty, then it fetches the 
address of the block pointed to by the queue tail pointer, 
updates the queue tail pointer and then jumps to the block to be 
evaluated. The block routine, as shown in Figure 6 for the 
block BKO, contains both evaluation code and fan-out 
processing code. It first removes the block being evaluated 
from the queue by setting the its flag to 0. It then evaluates the 
block and if a new event has been generated, it processes any 
fan-out blocks. A fan-out block will be inserted into the queue 
indexed by its level if it is not already in the queue. When this 
process finishes, the program jumps to the dispatcher and is 
ready for next block. 

Ci 

im d51, WI, qW% stW bq1161; 

DISP: asm(“cmp1 a4,a3W); 
asmrjeq BKCW); 
asm(“mov1 a3@ ,aOW); 
asm(“mov1 a3@(4)&M); 
asm(lljra aC@b”); 
asm(“KKO:b”); 

BKO: ‘(fg+O) = 0; 
new=AAB; 
if (YO != new) ( 

YO = new; 
if (*(fg+2) == 0) ( 

*(fg+2) = 1; 
qhp = qh+l; 
*((int *)*qhp) = *(ad+l); 
*(qhp) = *((int *)*qhp+l); 

I 
if (*(fg+3) == 0) ( 

*(fg+3) = 1; 
qhp = qh+l; 
*((int *)*qhp) = *(ad+3); 
*(qhp) = *((int *)*qhp+ 1); 

I 
1 
goto DISP; 

Figure 6. A Full Adder and Part of Its Code. 

One obvious advantage of the compiled implementation 
of the event scheduler is its simplicity. This comes in two 
ways. First , the indices to the arrays are pre-calculated so that 
multi-indirect addressing is eliminated. Second, some 
simplification can be done during code generation. For 
example, the scheduling algorithm as shown in Figure 5 
requires level checking after each block insertion to see if the 
unstable flag needs to be set. In an interpretive 
implementation, this requires at least two instructions to test 
the condition and one instruction to set the flag. In our 
implementation. the checking operation is done at code 
generation time. If the fan-out block leve.1 index is not lower 
than the current block level, which is usually the case, no level 
checking code will be generated. As a result, the event 
scheduling operation for most blocks requires only five 
machine instructions for the dispatcher and seven instructions 
for each fan-out. This contributes significantly to the 
efficiency of LECSIM. 
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5. Experimental Results 
Ten small to medium size benchmark circuits from 

ISCASt were used to evaluate the performance of LECSIM. 
These circuits have been used frequently to benchmark the 
performance of ATPG packages and simulators. All circuits are 
combinational and their characteristics are shown in Figure 7. 
Two versions of LECSIM have been tested. The fist treats 
singles gate as the primary elements and the second, called 
LECSIMp, treats fan-out-free blocks as the primary elements. 
These blocks are obtained by invoking a fan-out-free 
partitioning procedure in LECSIMp during circuit compilation. 
The characteristics of the partitioned circuits are shown in 
Figure 7. 

Fan-out free partitioning was introduced to reduce the 
amount of scheduling time for the lowest-level components of 
the circuit. For example, suppose a fanout-free block contains 
3 gates. Without partioning each of these gates must be 
scheduled individually, With partitioning the block 
containing the three gates will be scheduled as a unit. reducing 
the scheduling time by 66% for that block. 

Circuit 
~432 
c499 
c880 
cl355 
cl908 
~2670 
c3540 
c5315 
~6288 
~7552 

No Par 
Gates 
160 
202 
383 
546 
880 

1269 
1669 
2307 
2416 
3513 

oning 
Levels 

17 

:i 
24 
40 
32 
47 
49 

124 
43 

With Pa: tioning 
Blocks Levels 

60 13 
58 5 

105 17 
258 15 
377 38 
539 29 
555 44 
806 35 

1458 123 
1331 38 

Figure 7. The ten ISCS85 benchmark circuits 

The performance comparison between LECSIM and two 
other simulation packages, FHDL and EUSIM, is summarized in 
Figure 8. FHDL is a traditional levelized compiled logic 
simulator and EUSIM is a traditional unit delay, two-pass event 
driven interpretive logic simulator. Both simulators were 
developed from our previous research. All tests were performed 
on SUN 31260 with 12 Mbyte of main memory. Each circuit 
was simulated with 5000 randomly generated vectors. The 
results of the comparison are listed in Figure 8. To provide 
accurate comparison of the algorithms and implementation 
techniques, we list onty the net evaluation time. These figures 
do not include the time required to read vectors and print output. 

The test results show that LECSIM runs about 8 to 77 
times faster than EUSIM. The zero delay model and levelized 
event scheduling make significant contribution to the 
performance. On the average, the number of gates evaluated by 
LECSIM is only half to one third of that evaluated by EUSIM. 
For one particular example, the C6288 which has 124 levels, 
only 1 out of 26 gates are evaluated by LECSIM as compared to 
EUSIM. The rest of the performance improvement is due to the 
superiority of the compilation technique employed by LECSIM 
over the interpretive technique employed by EUSIM. As we 
expected, the event scheduling process, though efficiently 
implemented, introduces substantial amount of overhead. 
While LECSIM evaluates only about 50 to 60 percent of all 
gates, it is still 3 to 6 times slower than FHDL, which 
evaluates all gates for each test vector. This scheduling 
overhead can be reduced if we partition the circuits into fan-out- 
free blocks and schedule the events on the block level. 
Although LECSIMp evaluates more gates than LECSIM, it 
operates only about 1.5 to 3.4 times slower than FHDL. 

Run Ti 

128 
219 
309 
500 
707 
875 

1347 
1487 

,2133 

: in Second 
LBCSIMp 

.I34 
141 
330 
372 
605 
892 

1321 
1684 
1586 
2603 

213 
356 
763 

1466 
1550 
2318 
3815 

39032 
6275 

FHDL 
160 
202 
383 
546 
880 

1269 
1669 
2307 
2416 
3513 

Average Evaluations per vector 
Circuit 1 LECSIM 1 LECSIMp 1 EUSIM 
~432 1 3.5 1 2.2 I 41.7 
c499 4.2 2.3 44.2 
c880 7.4 4.3 79.6 
cl355 17.0 8.8 171.7 
cl908 32.0 16.2 399.1 
~2670 47.6 27.2 432.2 
c3540 61.4 36.8 560.7 
c5315 100.1 56.2 877.1 
~6288 117.6 90.6 9129.0 
~7552 164.0 95.6 1389.0 

FHDL 
1.4 
1.5 
3.2 
5.0 
7.1 
9.8 

12.1 
16.5 
30.1 
39.0 

Notes: 
1. LECSIMp is LECSIM with fan-out-free partitioning. 
2, EUSIM is a unit delay event driven interpretive simulator. 
3. FHDL is a levelized compiled simulator. 

Figure 8. Performance Comparison. 

For EUSIM, the event-driven interpretetive unit-delay 
simulator, the average activity rate for the ten benchmark 
circuits is about 22% with random stimuli. This activity rate 
was calculated by first counting the number of gates that would 
be simulated by EUSIM in the worst case and dividing this 
number into the actual number of gates simulated. The number 
of gates simulated in the worst case was obtained by simulating 
the circuit and forcing each gate-evaluation to produce an event 
regardless of whether the output had changed. The average 
activity rates fox LECSIM and LECSIMp are higher, 58% and 
66% respectively for random stimuli. The activity rate of 
LECSIMp was measured with respect to blocks rather than 
gates. These figures suggest that LECSIM will out perform 
FHDL when the activity rate is less than lo-19%, and that 
LECSIMp will out perform FHDL when the activity rate is less 
than 19~44%. Therefore, we feek that LECSIM, and especially 
LECSIMp, will exhibit performance comparable to that of a 
level&d compiled simuP;rtor for many applications. On the 
other hand, EUSIM will out perform FHDL only when the 
activity rate is lower than 0.2-0.9%. an activity rate which we 
seldom expect to see in practice. 

The major problems with LECSIM are that it requires more 
parse and compile time than an interpretive simulator, and it 
produces more generated code than a levelized compiled code 
simulator. In addition to the circuit parsing time, which is the 
same as for EUSIM, LECSIM consumes a significant amount of 
time in compiling the generated C program. This indicates that 
LECSIM is inefficient for the applications where only a few 
input vectors are simulated after each circuit modification. 
Figure 9 gives the parse and compile times for LECSIM and 
EUSIM, while Figure 10 gives the size of the generated code for 
LECSIM, LECSIMp, and FHDL. 
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Parse and compile time could probably be reduced through 
the use of incremental compilation[ 121. Instead of 
recompiling whole circuit after each modification, incremental 
compilation recompiles only the part of circuit which has been 
changed. We have investigated this technique during the 
development of FHDL [14], and we believe that it will be 
readily adaptable to LECSIM. 

At the time of this writing, we have not yet fully examined 
LECSIM’s performance on sequential circuits. 

c499 1.2 
c880 2.5 
cl355 3.5 
cl908 4.7 
~2670 8.1 
c3540 10.6 
c5315 17.1 
~6288 18.9 

7.8 
13.8 
63.6 
28.4 
42.6 
49.7 
76.2 

380.0 

9.0 
16.3 
67.1 
33.1 
50.7 
59.1 
93.3 

399.0 

::: 
3.0 
4.1 
7.5 
9.4 

15.2 
17.2 

~7552 1 28.0 1 553.0 1 581.0 1 25.4 
Note: Time is measured in seconds on a SUN 3/260. 

Figure 9. Circuit processing times. 

LECSrM EUSIM 
Compile [ Total Parse 

7.4 I 8.4 0.9 

1 LECSlM I LECSLMp 1 FHDL 
~432 1 51 41 I 32 
c499 61 50 33 
c880 106 76 41 
cl355 135 104 57 
cl908 184 125 82 
~2670 278 197 117 
c3540 334 222 124 
c5315 483 321 184 
~6288 526 

I 
417 

1 
208 

~7552 683 443 270 
Note: Numbers are size of object module in kilobytes. 

Figure 10. Circuit memory requirements. 

6 Conclusion and Future Work 

LECSJM is a levelized event driven compiled logic 
simulator. Et differs from traditional event driven interpretive 
simulators in that it employs levelization and compilation 
techniques to achieve high performance. It differs from 
traditional levelized compiled simulators in that it performs 
the simulation in a selective-trace, event-driven fashion. The 
experimental results demonstrate the superiority of this 
technique. LECSIM runs about 8 to 77 times faster than a 
traditional unit-delay event-driven interpretive simulator. 
While LECSIM is still slower than a traditional levelized 
compiled simulator (assuming that the same number of gates 
are simulated in each case). its event-driven approach will 
allow it to out perform levelized compiled simulators when 
circuit activity is low. 

Although the techniques presented in this paper are 
oriented toward high-performance zero-delay simulation, we 
feel that they are readily adaptable to multi-delay simulation. 
In any case, the compiled implementation of event scheduler 
provides an efficient alternative to the central event 
management scheme used in most event driven simulators. We 
are presently extending LECSIM to include a multi-delay 
simulation ability which we hope will provide performance 
improvements comparable to those presented in this paper. 
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