
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

COMPILED CODE IN DISTRIBUTED LOGIC SIMULATION

Jun Wang

Carl Tropper

School of Computer Science

McGill University

Montreal, Quebec, CANADA H3A2A6
ABSTRACT

A logic simulation approach known as compiled-code event-

driven simulation was developed in the past for sequential

logic simulation. It improves simulation performance by

reducing the logic evaluation and propagation time. In this

paper we describe the application of this approach to dis-

tributed logic simulation. Our experimental results show

that using compiled code can greatly improve the stabil-

ity and overall performance of a Time-Warp based logic

simulator. We also present a technique called fanout aggre-

gation that makes use of information on circuit partitions

and considerably improves the run-time performance of our

(distributed) compiled code simulator. It does not produce

a similar improvement when used in conjunction with an

interpreted simulator because of run-time overhead.

1 INTRODUCTION

Logic simulation plays a very important role in the digital

integrated circuit (IC) design process. Historically, two

primary classes of logic simulators have been developed:

compiled-code simulators that create a computer program

for each specific circuit, and event-driven simulators that

are based on the general event-driven simulation paradigm.

While the former eliminates the need for a central scheduler,

the latter has the advantage of processing only the circuit

elements that have a state change.

Compiled-code event-driven simulation (Lewis 1991;

Wang and Maurer 1990; Au, Weise, and Seligman 1991) is

a hybrid approach that attempts to combine the advantages

of both compiled-code and event-driven simulation. Since

circuit structure is known at compile-time, compiled-code

can be generated to represent the structure so as to reduce

logic evaluation and propagation time. At the same time, it

uses an event-driven simulation kernel to avoid evaluating

all circuit elements indiscriminately.

As circuit size grows, logic simulation has become a

bottle-neck in the IC design process. One approach to speed-

ing up the simulation task is distributed logic simulation
9811-4244-0501-7/06/$20.00 ©2006 IEEE
(Chamberlain 1995), in which the simulation is executed

on multiple CPUs. Synchronization and communication

among the processes involved in a distributed simulation

involves the sending of time-stamped messages between

the CPUs executing the simulation. Therefore, lowering

the message overhead is very important for better perfor-

mance. Furthermore, in a Time-Warp based distributed

simulation (Jefferson 1985), reducing the number of roll-

backs plays a critical role in determining the performance

of the simulator.

In this paper, we discuss the idea of using compiled

code in distributed event-driven logic simulation. As with its

sequential counterpart, we attempt to improve the simulation

performance by creating a compiled-code program for the

circuit structure, separate from the event-driven simulation

engine. Furthermore, while generating code, we can make

use of information available at compile-time to optimize

the generated code. In particular, we describe a technique

called fanout aggregation that combines messages sent from

a logic gate to another CPU, thereby reducing message and

scheduling overhead. This technique can also be used in an

interpreted simulator. However, it has a run time overhead

associated with it since the aggregation is performed at

run-time by checking the partition of the fan-outs and then

aggregating them, thereby producing mixed results in our

experiments. Used with compiled code, the technique incurs

no run-time overhead and works effectively.

The rest of the paper is organized as follows. Section 2

gives a brief overview of compiled-code event-driven logic

simulation. In Section 3 we describe the utilization of com-

piled code in distributed event-driven logic simulation, and

the optimization technique fanout aggregation. In Section

4 we present test results on some benchmark circuits and

our analysis of the results. Finally, Section 5 contains our

conclusions.

2 BACKGROUND

From the algorithmic point of view, logic simulators can be

broadly classified into two categories: oblivious and event-

http://crossmark.crossref.org/dialog/?doi=10.5555%2F1218112.1218293&domain=pdf&date_stamp=2006-12-03

Wang and Tropper

driven. In oblivious simulation, for each input vector, all

the logic elements in the circuit are evaluated, regardless

of whether any changes have occurred on their inputs. For

good performance, the circuit under simulation is usually

translated directly into a straight line of compiled-code that

evaluates the logic gates. This is possible because of the

oblivious nature of the simulation. To ensure correctness,

gates are levelized (Chiang and Palkovic 1986, Wang and

Maurer 1990, Wang et al. 1987) such that before a gate is

evaluated, all its fan-ins would have been evaluated. Sim-

ulation is performed by executing the generated program

directly and no external simulation engine is required. The

advantage of compiled oblivious simulation is that logic

evaluation and propagation operations are performed ex-

tremely fast. The generated code usually contains very few

conditionals and no loops. Also, it is very efficient for

repeated simulation runs. The disadvantage is that a lot of

useless work is done for gates whose state is not changed.

And because scheduling is implicitly implemented in the

generated code, compiled-code based simulations are lim-

ited to synchronous circuits with zero-delay or unit-delay,

although some researchers have tried to extend it to arbitrary

delay models (Shriver and Sakallah 1992, Lee and Maurer

1996).

Event-driven simulation, on the other hand, utilizes a

central event queue and processes only the state changes

occurring in the circuit. This usually implies an interpretive

implementation where the simulator creates internal data

structures to represent the circuit, and logic evaluation and

propagation are performed on these data structures. The

advantage of event-driven logic simulation is that it only

processes the activities in the circuit. Another advantage is

that it is capable of handling all circuit models (synchronous

or asynchronous) and timing models (zero-delay, unit-delay,

or arbitrary delay). The disadvantage is the scheduling

overhead and the fact that it takes longer to evaluate and

propagate logic values due to the need to traverse the data

structures.

Compiled-code event-driven simulation attempts to take

advantage of the strengths of both approaches. The simu-

lation is event-driven in nature, but the circuit structure is

translated into compiled-code. However, the compiled-code

is not a straight line of code as in oblivious simulation. In-

stead, it is a collection of chunks of code with each chunk

performing the evaluation or propagation for one gate. Each

chunk can be implemented as a procedure or simply distin-

guished by a leading label. The simulation kernel can also

be greatly simplified (Lewis 1991, Wang and Maurer 1990)

to be a central dispatcher. The simulation is performed by

jumping back and forth between the chunks of code and

the dispatcher as directed by the generated events. Figure 1

is an example modified from Lewis (1991) that shows a

simple circuit and a chunk of code to propagate the output

of gate A.

9

A

B

C

D

fanout A:

node val[A] = next node val[A];

node active[A] = FALSE;

if(!gate active[B]) {
gate active[B] = TRUE;

*gate active ptr++ = &simulate B;

}
if(!gate active[C]) {

gate active[C] = TRUE;

*gate active ptr++ = &simulate C;

}
if(!gate active[D]) {

gate active[D] = TRUE;

*gate active ptr++ = &simulate D;

}

Figure 1: Example Circuit and Propagation Code for Gate

A.

The distinction between compiled-code event-driven

simulation and purely event-driven simulation can also be

described in terms of partial evaluation (Au, Weise, and

Seligman 1991), a technique that turns a generic program

into a specialized program by combining the generic program

with some known constant inputs. The compiled code

of the circuit structure is the constant data, and together

with the simulation engine forms a specialized event-driven

simulation program.

Among the major advantages of compiled event-driven

simulation are:

• Fast logic value propagation.

• Efficiency for repeated simulation runs.

• Possibilities of compile-time optimizations.

• Simplified scheduler with less scheduling overhead.

3 DISTRIBUTED COMPILED-CODE EVENT-

DRIVEN SIMULATION

3.1 Distributed Logic Simulation

As circuit complexity grows steadily, researchers have been

looking at parallel and distributed simulation as a way to
82

Wang and Tropper

speed up simulation of digital ICs. In distributed logic

simulation, multiple CPUs are utilized. The circuit is first

partitioned into a number of parts and each part is assigned

to one of the CPUs, which then carry out the simulation in

parallel in an attempt to shorten simulation time. Commu-

nication among the CPUs is achieved by exchanging times-

tamped messages. In order to ensure simulation correctness,

synchronization protocols are employed. Two major class

of synchronization protocols have been developed: conser-

vative and optimistic. Conservative protocols (Chandy and

Misra 1981) achieve synchronization by making use of a

blocking protocol, while in an optimistic protocol such as

Time Warp (Jefferson 1985), a logical process (LP) proceeds

without any concern for other LPs until a message in its

past (a straggler message) is received, at which point the LP

“rolls back” to a (simulated) time prior to the time of the

straggler message. Messages which were sent to other LPs

after the straggler are canceled by sending anti-messages.

To date, distributed logic simulators have been imple-

mented as event-driven simulators. As mentioned above,

this also means the simulator is interpretive. Figure 2 shows

the structure of a distributed interpretive event-driven logic

simulator.

 Netlist

Parser

Int. data structure

Simulation kernel

Figure 2: Typical Interpretive Event-Driven Simulator.

3.2 Compiled Code in Distributed Logic Simulation

As an alternative, we create a distributed compiled-code

event-driven simulator in which the event-driven simulation

kernel is retained, but the data structures representing the

circuit to be simulated are created as separate programs.

First, we partition the circuit into desired number of parts.

Then for each part, we create a C file that contains code for

the logic propagation of each gate belonging to that part. The

C files are then compiled into shared objects and dynamically

loaded and linked to the simulation kernel at run-time, as

shown in Figure 3. The overhead of compiling the C files

can be greatly reduced by compiling them in parallel, since

they are completely independent of one another (each file

corresponds to a partition).
983

 Netlist

Parser

Internal netlist

 Code generator

Compiler

 Shared object

 Program code

 Simulation kernel

Figure 3: Compiled-Code Event-Driven Simulator.

It should be noted that translating a circuit description

into C code works not only for a structural description,

but also for a behavioral description which is common

in modern hardware description languages (HDL) such as

Verilog (IEEE 2001). In interpretive simulators, a behavioral

description is usually translated into internal data structures

and executed in an interpretive way. With compiled code,

a behavioral description can be directly translated into C

code, which is more efficient at run-time than interpreted

code. In addition, the C code can be further optimized with

an optimizing C compiler.

As pointed out above, a direct effect of compiled code is

more efficient processing of logic propagation. Furthermore,

it also allows compile-time optimization techniques to be

easily applied. For example, since the circuit structure

is known at compile-time, all of the propagation loops

are unrolled. Other possible compile-time optimizations

include:

1. Elimination of buffers and inverters, which essen-

tially reduces the circuit size (Maurer 1997).

2. Gate grouping, which reduces run-time scheduling

overhead (Maurer 1997).

3. Gate levelization.

4. Identifying of gate trees or strongly-connected com-

ponents.

One major difference from sequential compiled-code

event-driven simulation is the necessity to do partitioning.

With partitioning information available at compile-time,

more optimizations can be performed. For example, when

a fanout gate f of a gate g is in another part, we need to

Wang and Tropper
send a message to that part when the output of g is changed.

With the part of f known at compile-time, we can generate

code for g to directly send a message to that specific part,

thus eliminating the need to check the part of f at run-time.

Figure 4(a) shows code generated for gate A in the example

circuit in Figure 1. Suppose gate B and C are in part 2

while gate A is in another part, when gate A propagates its

value, the generated code sends messages directly to part

2 without any run-time checking.

3.3 Fanout Aggregation

A simple yet very effective optimization technique called

fanout aggregation also makes use of partitioning informa-

tion. Using the circuit in Figure 1 as an example, assume

both B and C are in the same part, say part 2, while A is in

another part. When the output of A changes, we send one

message for each of B and C, as shown in Figure 4(a). The

receiver of the messages will schedule one event for each

message. Obviously, since B and C are in the same parti-

tion, we can combine the two messages into one, thereby

reducing the number of messages. Reducing the number of

messages causes a reduction of the probability of rollbacks

in Time Warp. Furthermore, when an aggregation message

is received, only one event needs to be scheduled. Thus,

we also reduce the number of scheduled events.

Example code generated with fanout aggregation is

shown in Figure 4(b). One aggregation message is sent for

both B and C instead of two messages in Figure 4(a).

This technique can also be used in an interpreted simu-

lator. At run-time, the partition information of the fan-outs

are checked, and those belonging to the same partition are

combined. This run-time overhead, however, would to a

certain extent offsets the benefits. With compiled code,

as demonstrated in Figure 4(b), the aggregation is done at

compile-time, therefore, there is no run-time overhead.

4 EXPERIMENTAL RESULTS

We have implemented a distributed compiled-code event-

driven logic simulator based on the Distributed Verilog

Simulator (DVS) as described in Li and Tropper (2003).

A separate program accepts netlists as input, partitions the

internal netlist, and produces C files. A command-line

option directs whether or not the code generator should

perform fanout aggregation. The C files are then compiled

into shared objects and are loaded by the simulator proper

at run-time.

We tested the simulator on some of the largest ISCAS-89

benchmark circuits (Brglez, Bryan, and Kozminski 1989).

Each circuit was supplied with 100 random test vectors.

Table 1 shows the number of gates, D flip-flops, and primary

inputs and outputs. We compared the performance of the

simulator to that of an interpreted simulator. The interpreted
984
void propagate(int index)

{
switch(index) {

case A:

send assign msg(2, B, 1, val);

send assign msg(2, C, 1, val);

gates[D]→set(1, val);

break;

...

}
}

(a)

void propagate(int index)

{
agg item aggs[MAX ITEMS];

switch(index) {
case A:

aggs[0].index = B;

aggs[0].pin = 1;

aggs[1].index = C;

aggs[1].pin = 1;

send agg assign msg(2, aggs, 2, val);

gates[D]→set(1, val);

break;

...

}
}

(b)

Figure 4: (a) Code for Propagation of Gate A; (b) Code

with Fanout Aggregation.

Table 1: Circuit Profile.

Circuit Gates DFFs Inputs Outputs

s15850 9772 534 77 150

s35932 16065 1728 35 320

s38417 22179 1636 28 106

s38584 19253 1426 38 304

simulator differs from the compiled simulator only in that

logic propagation is performed by traversing data structures.

We made use of two versions of the interpreted simulator as

well. One performed fanout aggregation at run time while

the other did not.

All experiments were conducted on a four node net-

work of AMD Athlon 64 computers running Linux. The

computers were connected by a fast ethernet switch.

MPICH (<http://www-unix.mcs.anl.gov/mpi/

mpich/>) was the underlying messaging system.

For each circuit, we performed partitioning with an im-

plementation of the Fiduccia-Mattheyses algorithm (Fiduc-

cia and Mattheyses 1982).

Wang and Tropper
We choose to exhibit results for a two node network

because neither version of the interpreted simulator could

complete a simulation on four nodes. This was a conse-

quence of the communication overhead of the fast ethernet

relative to the CPU speed of the Athlon 64 CPU’s. While

the compiled code version did complete on four nodes, its

execution times were larger than on two nodes for much

the same reasons.

Tables 2–5 depict the running time, the total number

of messages sent during the simulation, the total number

of scheduled events and the total number of rollbacks,

respectively for a two node network. The column labeled

“iagg” contains results for the interpreted simulator with

fanout aggregation while the “cagg” column contains results

for the compiled simulator with fanout aggregation. A

third column shows the reduction in percentage of each

performance measure for “cagg” compared with the same

measures for “iagg”. Each entry in the tables is the average

value of five simulation runs.

The interpreted version without fanout aggregation did

not complete on two nodes. When fanout aggregation was

added to the picture, simulations of all of the circuits with

the exception of s38584 completed their executions.

These observations suggest that compiled code helps

to stabilize optimistic logic simulators.

Comparing the results obtained for the interpreted and

compiled code simulators with fanout aggregation, we see

that the compiled code version results in far better simulation

performance than the interpreted version. Fewer events

are scheduled, fewer messages are sent, the number of

rollbacks is significantly smaller and the execution time is

much smaller. The results for s38417, for example, show

6.8% fewer scheduled events, 11.2% fewer messages, 27.4%

fewer rollbacks and a running time which is 24.0% smaller.

The reason for the success of the compiled code simu-

lation lies in its speeding up of logic evaluation and prop-

agation. As a consequence messages are delivered more

quickly between processors, resulting in a decreased num-

ber of rollbacks. Fanout aggregation causes events to be

delivered between processors more quickly and also results

in the scheduling of fewer events.

5 CONCLUSIONS

Combining compiled-code with event-driven logic simula-

tion has the advantage of shortening the processing time

for logic propagation events as well as opening the door to

compile-time optimizations such as fanout aggregation.

In this paper we compared the performance of a dis-

tributed compiled code logic simulator to that of a distributed

interpreted simulator with and without fanout aggregation.

The compiled code simulator exhibited a far superior perfor-

mance to the interpreted simulator on a two node network

with fanout aggregation. In fact, its performance without
985
Table 2: Running Time in Seconds.

Circuits iagg cagg reduction

s15850 13.75 12.02 12.6%

s35932 9.69 6.11 37.0%

s38417 20.85 15.86 24.0%

s38584 NA 20.29 NA

Table 3: Messages Sent During Simulation.

Circuits iagg cagg reduction

s15850 103501 93130 10.0%

s35932 42228 26469 37.4%

s38417 182598 162166 11.2%

s38584 NA 96687 NA

Table 4: Scheduled Events.

Circuits iagg cagg reduction

s15850 899124 839739 6.7%

s35932 876028 637484 27.3%

s38417 2006682 1870297 6.8%

s38584 NA 1207710 NA

Table 5: Number of Rollbacks.

Circuits iagg cagg reduction

s15850 4607 4059 11.9%

s35932 505 506 0.0%

s38417 3892 2827 27.4%

s38584 NA 2545 NA

fanout aggregation was either better then or at worst close

to that of the interpreted one with fanout aggregation.

Perhaps more significant is the stability which compiled

code lends to distributed optimistic logic simulation. The

interpreted code simulator could not complete on four nodes

with or without fanout aggregation and could not complete

its execution on two nodes without fanout aggregation. In

contrast, the compiled code simulator always completed

its execution on either two or four nodes, with or without

fanout aggregation.

Our future work will focus on reducing the overhead

of the scheduler, as well as identifying new compile-time

optimization techniques that can further improve simulation

performance. We also plan to investigate the scalability of

compiled code algorithms on larger circuits. The ISCAS

circuits which we used to run the experiments described in

this paper are the largest of the publicly available circuits.

Wang and Tropper
REFERENCES

Au, W., D. Weise, and S. Seligman. 1991. Automatic gener-

ation of compiled simulation through program special-

ization. In Proceedings of the 28th ACM/IEEE Design

Automation Conference.

Brglez, F., D. Bryan, and K. Kozminski. 1989. Combi-

national profiles of sequential benchmark circuits. In

Proceedings of IEEE Symposium on Circuits and Sys-

tems.

Chamberlain, R. 1995. Parallel logic simulation of VLSI

systems. In Proceedings of the 32nd ACM/IEEE Design

Automation Conference.

Chandy, K., and J. Misra. 1981. Asynchronous distributed

simulation via a sequence of parallel computations.

Communications of the ACM 24 (11): 198–206.

Chiang, M., and R. Palkovic. 1986, March. Lcc simulators

speed development of synchronous hardware. Computer

Design 25 (5): 87–92.

Fiduccia, C., and R. Mattheyses. 1982. A linear-time heuris-

tic for improving network partitions. In Proceedings of

the 19th Design Automation Conference.

IEEE. 2001. IEEE standard 1364-2001, IEEE standard

verilog hardware description language.

Jefferson, D. 1985, July. Virtual time. ACM Transactions on

Programming Languages and Systems 7 (3): 404–425.

Lee, Y., and P. Maurer. 1996, December. Bit-parallel multide-

lay simulation. IEEE Transactions on CAD of Integrated

Circuits and Systems 15 (12): 1547–1554.

Lewis, D. 1991, June. A hierarchical compiled code event-

driven logic simulator. IEEE Transactions on Computer-

Aided Design 10 (6): 726–737.

Li, L., and C. Tropper. 2003. DVS: An object-oriented frame-

work for distributed verilog simulation. In Proceedings

of the 17th Workshop on Parallel and Distributed Sim-

ulation.

Maurer, P. 1997, July. The inversion algorithm for digital

simulation. IEEE Transactions on CAD of Integrated

Circuits and Systems 16 (7): 762–769.

Shriver, E., and K. Sakallah. 1992. Ravel: Assigned-delay

compiled code logic simulation. In Proceedings of In-

ternational Conference on Computer-Aided Design.

Wang, L.-T., N. Hoover, E. Porter, and J. Zasio. 1987.

SSIM: a software levelized compiled-code simulator. In

Proceedings of the 24th ACM/IEEE Design Automation

Conference.

Wang, Z., and P. Maurer. 1990. LECSIM: A levelized event

driven compiled logic simulator. In Proceedings of the

27th ACM/IEEE Design Automation Conference.

AUTHOR BIOGRAPHIES

JUN WANG is currently a Ph.D. candidate in the School of

Computer Science at McGill University. His main research
986
area is Parallel and Distributed Simulations. His email

address is <jwang90@cs.mcgill.ca>.

CARL TROPPER is a professor in the Computer Science

Department at McGill University. He has worked in the area

of distributed simulation virtually from the inception of the

area. Currently his research is focused on distributed VLSI

simulation. His email address is <carl@cs.mcgill.

ca>.

