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ABSTRACT 
Levelized Compiled Code (LCC) multi-delay simulation is 
an idea whose time has come. Although it is not a new idea, 
when it was first proposed the hardware and software 
technology of the time was not capable of meeting the 
demands of such a simulation technique[1]. The basic 
technique is to predict the points in time when each gate 
can change value, and generate simulation code to compute 
the output of the gate at those times. For multi-delay 
simulation in which each gate has an integer delay greater 
than or equal to one, many circuits require several 
megabytes of straight-line code. Running such code was 
technologically infeasible when the technique was first 
proposed. However, technology has caught up with the 
algorithm, and it is now possible to determine whether 
oblivious multi-delay simulation is a viable method of logic 
simulation. Our experimental data shows that oblivious 
multi-delay simulation is many times faster than event-
driven simulation for typical circuits, and significantly 
faster even with extremely demanding simulation 
parameters. 
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INTRODUCTION
Many people feel that levelized compiled code (LCC) 
simulation, an oblivious simulation technique, is the fastest 
form of logic simulation [2]. Logic simulation treats a 
digital circuit as a collection of gates, and simulates each 
gate as a function of its inputs. Many different logic 
simulation algorithms have been discovered [3-13]. Basic 
LCC simulation uses the zero-delay model in which gates 
are treated as pure functions with no internal delay. In [1] 
Levelized Compiled Code simulators were developed for 
the unit-delay model, in which all gates are assumed to 
have identical delays. When the unit-delay LCC simulators 
were first developed in the early ‘90s there was also some 
interest in developing an LCC multi-delay simulator, which 
would permit gates to have differing integer delays. 
However, there were several factors that made multi-delay 
LCC simulation virtually impossible. In any form of delay 
simulation, the output of a gate may change several times 

during the simulation of a single input and simulation code 
must be generated for each such potential change. For 
multi-delay simulation, this yields a huge amount of 
generated code. For one test circuit, the generated code was 
50 megabytes and required several days to compile. At the 
time, computer memory sizes were something on the order 
of 4-8 megabytes, making it impossible to execute the 
compiled code. The generated code was essentially all 
straight-line code. Few if any, caches of the early ‘90s were 
pre-paging. Such caches strongly favor tight loops that fit 
completely in the cache. Even if it had been possible to 
execute 50 megabytes of straight-line code, it would have 
been too slow to compete with event-driven methods. 

But things have changed since the early 90’s. Today 50 
megabytes of code is nothing. Memories are now many 
gigabytes in size. Compiling 50 megabytes of code now 
takes about two minutes. And best of all, virtually all 
caches are now pre-paging. The advantage of having small 
tight loops is much lower that it was in 1990. It is time to 
take a second look at multi-delay LCC simulation. 

THEORETICAL FOUNDATION 
Logic simulation treats digital circuits as networks of gates. 
A gate is a small circuit that computes a Boolean function 
such as AND or OR. The wires that connect gates to one 
another, and to the outside world are called nets. Nets that 
receive input from the outside world are called primary 
inputs, and those that produce results for the outside world 
are called primary outputs. The entire circuit description is 
called a network.

Our oblivious multi-delay simulator is based on a concept 
called Potential Change Sets, or PC-sets. The PC-set of a 
net gives a global picture of how changes on a net can take 
place. Consider the circuit of Figure 1. A, B, and C are 
primary inputs. We assume that these can change only at 
time zero. (Our simulator is not restricted to this 
assumption.) Because gate G1 has a delay of 2, D cannot 
change until time 2. In fact, because the inputs of G1 can 
change only at time 0, D can change only at time 2. G2, 
however, has differing length input paths. Two through G1, 
and one through the primary input C. E can change at time 
3, because C can change at time 0. But because D can 
change at time 2, E can also change at time 5. E cannot 
change at any other times other than 3 or 5. The PC-set is 
used to capture this information for each net in the circuit. It 
is, essentially, a list of the differing length paths (in terms 
of delay) between the primary inputs of a circuit and a net. 
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Figure 1. A Sample Network. 

GENERATING PC-SETS 
The first step in computing PC-sets is creating the 
companion graph of a gate network. A vertex is created for 
each gate and each net in the circuit, as illustrated in Figure 
2. It is not possible to use nets as edges, because net fanout 
would yield edges with more than two ends. Also, proper 
handling of wired-or and wired-and connections makes it 
necessary to treat nets as vertices. 

Figure 2. The Companion Graph of a Network. 

Note that the resulting graph is bipartite with net-vertices 
alternating with gate vertices. PC-sets are created by 
performing a topological search of the companion graph, 
and a PC-set is assigned to each vertex. Although only the 
PC-sets of the net vertices will be used to generate code, it 
is necessary to compute PC-sets for gate vertices to 
guarantee that the PC-sets of the net vertices are computed 
correctly. The topological search starts with the source 
vertices, which represent the primary inputs of the circuit. 

The primary inputs of the circuit are assumed to change at 
time zero, and remain constant throughout the simulation. 
(This assumption is not essential to the algorithm. If 
necessary, a few simple modifications will permit more 
complex changes in the primary inputs.) Each primary input 
vertex is assigned a PC-Set of {0}, the set containing the 

single element, zero. If the circuit contains any constant 1 
or constant 0 nets, these nets are treated as source vertices 
with empty PC-sets. However our benchmark circuits 
contain no constant signals, and in general, these are 
uncommon. 

When a vertex is visited, all preceding circuit elements will 
have been assigned PC-sets, including the immediate 
predecessors of the vertex. The first step is to obtain the 
PC-sets of all immediate predecessors, and form the union 
of these sets, as shown in Figure 3. 

Figure 3. Initial PC-Set computation. 

If the current vertex is a net vertex, the union is assigned to 
the vertex as its PC-set. If the current vertex is a gate 
vertex, the delay of the gate is added to each element of the 
PC-set and the result is assigned to the vertex as its PC-set, 
as shown in Figure 4. 

Figure 4. Assigning a PC-Set to a Gate. 

Most net vertices will have a single predecessor, which 
causes the PC-set to simply be copied from the predecessor. 
The exception is those nets that are wired together to form 
wired-or or wired-and connections. Although our 
benchmark tests do not contain connections of this type, 
their PC-sets can be easily computed as illustrated in Figure 
5. In this case, the connection acts as a zero-delay gate, and 
is treated accordingly. 

Figure 5. Assigning a PC-Set to a Wired AND/OR. 

Once PC-sets have been computed for each vertex of the 
companion graph, code is generated for each net vertex. 
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CODE GENERATION 
Code is generated using the net vertices of the companion 
graph in topological order. This guarantees that new signal 
values are available when they are needed, regardless of the 
simulated time at which they occur. Thus for the network of 
Figure 2, all changes in nets X and Y will be computed 
first, followed by all changes in net Z. The changes in net Q 
will be computed last. The type of code generated is based 
on the logic model used in simulating the circuit. In our 
simulations, we use a two-valued (0, 1) model, however it 
is also possible to use three valued logic (0, 1, Unknown) or 
four-valued logic (0, 1, Unknown, High-Impedance). It is 
also possible to mix logic models, using different logic 
models for different nets. 

When generating simulation code for a net, one simulation 
statement (or set of statements) must be generated for each 
element of the PC-set. To simplify the presentation, we will 
assume a two-valued transport delay model. 

The first step is to generate a variable for each member of 
each PC-set. To do this correctly, it is necessary to compare 
the PC-sets of the nets attached to a single gate and add a 
zero element to some PC-sets. Figure 6 illustrates the 
problem. To compute the value of net C at time 4, we need 
the values of nets A and B at time 1. However, as it stands, 
net B has no PC-set value for times earlier than time 3. To 
correct this problem, we add a zero to the PC-set of B, 
which represents the value of net B from the previous input 
vector. It is necessary to generate a variable to hold the 
time-zero value, but the value of the variable is computed 
differently from other net values. Zero insertion is 
performed for the inputs of every gate in the network before 
any variables are generated. A gate-input, A, requires zero 
insertion if there is another input, B, of the same gate, and 
the smallest PC-set value of B is smaller than the smallest 
PC-set value of A. The variables generated for the nets 
pictured in Figure 6 would be A1, A2, A3, B0, B3, B4, B5, 
C4, C5, C6, C7, and C8. 

Figure 6. Zero Insertion. 

After generating the variable for each PC-set value, the next 
step is to generate simulation code. Code generation begins 
with nets that have been subject to zero insertion. It is 
necessary to copy the value of the variable corresponding to 
the largest PC-set element into the time-zero variable. The 
variable with the highest PC-set value will automatically 
contain the final value of the net from the previous input 
vector. The first line of Figure 7 shows how this would be 
done for the gate of Figure 6. 

Next, simulation code is generated for each PC-set element 
of the gate output (except zero if it is present). This code 
consists of a set of assignment statements that compute the 
function of the gate. The operands of the assignments are 
determined using the delay of the gate. Suppose the value at 
time x is being computed for a gate with delay d. Each 
input of the gate must appear in the simulation statement. If 
the value for time d-x is available, it is used. If no value for 
time d-x is explicitly available, the next earliest time is 
used. The last five lines of Figure 7 show how this would 
be done for the gate of Figure 6. 

During code generation, nets are processed in topological 
order. All values for all times are computed for a net before 
the net will be used as an input to another gate. This insures 
that all net values are available when needed. For a single 
net, simulation code is generated in ascending order by 
time. 

B0 = B5; 
C4 = A1 & B0; 
C5 = A2 & B0; 
C6 = A3 & B3; 
C7 = A3 & B4; 
C8 = A3 & B5; 

Figure 7. Code Generation. 

OTHER TIMING MODELS 
In Figure 7, we have shown code for two-valued transport 
delay simulation. The oblivious multi-delay technique is not 
restricted to this timing model. For example, we could have 
generated code for the three valued model, using the truth 
tables of Figure 8. Figure 9 shows the code for the value 
C4. There are more efficient ways to execute the three-
valued model, but the example of Figure 9 shows explicitly 
how the model could be handled. 

Similarly, we could also generate code using a four-valued 
model containing the values 0, 1, U (unknown) and Z (high-
impedance). Any optimization used in event-driven 
simulation can also be used in the oblivious multi-delay 
simulator. 

TRANSPORT DELAY VS. INERTIAL DELAY 
The transport delay model is, in some sense, the most 
pessimistic of delay models. It assumes that every change in 
a gate’s inputs may propagate through the gate to the 
outputs. In many cases, this is not true. The delay of a gate 
is not simply the time it takes for a signal to propagate from 
the inputs to the outputs, it is the time it takes for the 
internal circuit elements to transition from one state to 
another. Because these transitions are not instantaneous, it 
is not true that all signals that appear on the inputs of a gate 
will be transmitted to the outputs. Some simulators adopt 
the policy that no gate can transmit a pulse shorter than its 
delay. However, the output of the gate does indeed change, 
and if the output fans out to several different gates, different 
down-stream gates may see the short pulse differently. We 
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feel that it is dangerous to ignore these short pulses 
completely, but can also be desirable to allow the gate to 
filter out short pulses, at least for certain gates. 

AND 0 1 U  OR 0 1 U 

0 0 0 0 0 0 1 U 

1 0 1 U 1 1 1 1 

U 0 U U U U 1 U 

Figure 8. Three-Valued Logic. 

if (A1==0 || B0==0) 
{
 C4 = 0; 
}
else if (A1 == U || B0 == U) 
{
 C4 = U; 
}
else
{
 C4 = 1; 
}

Figure 9. Three-Valued Logic. 

To filter a short pulse, it is necessary to test several values 
of a gate. Suppose in Figure 6 we wish to detect a short 
pulse between times 6 or 7 and time 8 of output C. This 
would be done as shown in Figure 10. It is possible to 
optimize this code. We have written it in this form to make 
it explicitly clear what is going on. If a short pulse, starting 
at times 5 or 6, has occurred, we flatten the pulse by setting 
the intermediate values to the starting and ending values. 
Because simulation code is generated in topological order, 
no downstream gate will see the short pulse. 

C8 = A3 & B5; 

// check for width 2 pulse 

if (C8 == C5 && C6 != C8 && C7 != C8) 

{

 C7 = C8; 

 C6 = C8; 

}

// check for width 1 pulse. Earlier pulses are 
already gone. 

else if (C8 == C6 && C7 != C6) 

{

 C7 = C8; 

}

Figure 10. The Inertial Delay Model. 

Although the testing shown in Figure 10 will increase 
simulation time, similar tests must be done in an event 
driven simulator. Before inserting an event into the queue, 
the simulator must test for the presence of an earlier event 
for the same net. If such an event is found, the new value of 
the net contained in the event must be tested against the 
new value being computed for the current time. 
Furthermore, if a short pulse is found, it is then necessary to 
cancel the existing event, which can be more time 
consuming that simply copying a value from one variable to 
another. 

Oblivious multi-delay simulation has another advantage 
over event-driven simulation. Because event-driven 
simulation does not have the global perspective of the PC-
set, it is necessary to check for short pulses every time a 
gate is simulated even if such a pulse could not possibly 
occur. Suppose a delay-3 gate has an output PC-set of {3, 
12, 23, 47}. No short pulses can occur for this net, because 
changes cannot occur close enough together. For this net, it 
is safe to generate transport-delay type code, and not check 
for short pulses. 

SEQUENTIAL CIRCUITS 
Oblivious multi-delay simulation can be used with 
combinational circuits and with sequential circuits. The 
procedure for synchronous sequential circuits is to break the 
simulation into two phases. In a synchronous sequential 
circuit, every cycle in the circuit must contain at least one 
clocked flip-flop. Once the flip-flops are removed from the 
circuit, the circuit becomes combinational. Our approach 
does exactly this. Simulation is broken into two phases. 
During phase 1, the combinational logic of the circuit is 
simulated using the techniques described above. During 
phase 2, all flip-flops are simulated. Flip-flops are 
simulated directly, not as collections of combinational gates 
with feed-back arcs. This approach serves as an aid to 
debugging the circuit, because errors, such as a 1,1->0,0 
transition in an RS flip-flop can be reported explicitly. 
Simulating the individual gates would lead to an oscillation 
which would then have to be traced and diagnosed. 

Many synchronous circuits have a few embedded 
asynchronous elements. These are generally not a problem. 
However, if an asynchronous flip-flop appears in a cycle 
that does not contain a synchronous flip-flop, or if feed-
back loops appear in collections of combinational gates 
with no synchronous flip-flop in the cycle, then performing 
a topological search of the combinational network will be 
impossible. Both of these conditions are rare. If either of 
these situations occurs, they can be handled using a 
technique known as the convergence algorithm [14]. The 
convergence algorithm is an extension of multi-delay 
oblivious simulation. It can handle any circuit, including 
asynchronous circuits, with some sacrifice in performance. 
The details of the convergence algorithm are beyond the 
scope of this paper. 
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EXPERIMENTAL DATA 
To determine the efficacy of oblivious multi-delay 
simulation, we performed two sets of experiments using the 
two-valued transport delay model. The basis of these 
experiments was the ISCAS85 combinational benchmarks, 
which have been a standard for measuring simulation 
performance for many years [15]. The multi-delay 
simulator is an implementation of the algorithm described 
in [16]. (The source code of this simulator as well as that 
for our oblivious simulator is available upon request.) The 
results of the experiments are reported in Tables 1 and 2 in 
terms of seconds of execution time. The time to read 
vectors and print output was eliminated from these results. 
In the first experiment, each gate was assigned a typical 
delay with a base delay of 1 and an increment of 1 added 
for each gate input. For the second experiment, gates were 
assigned random delays from 1 through 8. Random delays 
are more stressful, because this increases the probability 
that two paths to a gate will have differing delays. This will 
cause more events to be executed, and significantly more 
code to be generated. To make it clear, the experiment with 
typical delays reflects the sort of delay patterns that one 
would expect to encounter in practice. The experiment with 
random delays uses artificial delay patterns specifically 
designed to create a stressful experiment. In both cases 
oblivious simulation significantly outperformed event 
driven simulation. As is to be expected, the highest gains 
were for the typical delays. Although there were also 
significant performance gains for random delays (except for 
circuit c1908), the gains were more modest. We initially 
assumed that the gains for this experiment would be non-
existent or negative for all circuits, so the performance 
improvement was a pleasant surprise. Compilation times for 
the circuits were negligible. 

Circuit Oblivious Event Driven Improvement 
c432 1.640 13.544 8.26 
c499 0.664 12.650 19.05 
c880 3.650 23.738 6.50 
c1355 9.284 47.294 5.09 
c1908 14.454 95.778 6.63 
c2670 6.972 116.426 16.70 
c3540 48.544 208.076 4.29 
c5315 47.522 409.620 8.62 
c6288 660.622 3487.456 5.28 
c7552 121.662 876.104 7.20 

Table 1. Typical Delays.  

When evaluating these results, it is important to keep in 
mind that oblivious simulation times are static, regardless 
of any changes in the inputs. Our experiments used 
randomly generated inputs with a large number of changes. 
As the number of changes in the inputs approaches zero, 
event driven simulation will eventually begin to out-
perform oblivious simulation. However, inputs with few 
changes tend to do a relatively poor job of verifying the 
correctness of a circuit. When simulating a thoroughly 

verified circuit as part of a larger circuit, event-driven 
simulation may well be preferable. But for the initial design 
verification of a circuit, we believe that randomly generated 
inputs will be preferable. 

Circuit Oblivious Event Driven Improvement 
c432 4.574 16.240 3.55 
c499 2.284 30.218 13.23 
c880 9.824 27.038 2.75 
c1355 55.972 79.276 1.42 
c1908 143.770 106.198 .74 
c2670 43.408 140.660 3.24 
c3540 210.026 257.798 1.23 
c5315 214.972 415.552 1.93 
c6288 2128.690 6955.960 3.27 
c7552 346.032 827.178 2.39 

Table 2. Random Delays. 

CONCLUSION
The LCC multi-delay simulation technique provides 
significant performance improvements over event-driven 
multi-delay simulation. These improvements are evident 
even when using the technique with highly stressful input. 
The PC-Set method is adaptable to many different logic 
models and timing models, making it useful in many 
different contexts. It also can be used with all but a handful 
of sequential circuits, and can be extended to handle even 
these cases. The algorithm is somewhat more complex than 
zero-delay LCC simulation, but compilation times are still 
negligible. The PC-Set method is only one of several LCC 
multi-delay simulation algorithms. It is possible that the 
other algorithms will show improvements similar to that of 
the PC-Set method. Regardless of this, the multi-delay PC-
Set method should prove a valuable addition to the current 
repertoire of simulation algorithms. 
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