Check for
Updates

Two New Techniques for Compiled Multi-Delay Logic Simulation*

Yun Sik Lee
Peter M. Maurer
Department of Computer Science and Engineering
University of South Florida
Tampa, FL. 33620

Abstract

This paper describes two techniques for compiled event
driven multi-delay logic simulation that provide
significant performance improvements over interpreted
multi-delay logic simulation. These two techniques are
based on the concept of retargetable branch instructions
that can be used to switch segments of code into and out
of the instruction stream. QOur second algorithm, called
the shadow technique, has been designed especially for
systems with instruction caches. Benchmark experiments
shows these two techniques are up to 15 times faster than
our interpreted multi-delay simulator, with an average
improvement of about 5 times for our fastest method.

1. Introduction.

As the design of a circuit proceeds, more accurate
simulation is required. In particular, more accurate models
than zero or unit-delay timing are usually needed during
the final phases of the design. The many well-known
techniques for compiled simulation [1-6], are based on
zero and unit-delay which do not provide an accurate
picture of a circuit's timing behavior, For some circuit
elements, delay is the essential nature of the function, and
a accurate timing model is necessary to model them.

This paper focuses on multi-delay timing [7], in which
the delay of each gate is an integral multiple of some
basic unit. Delays may be the same for each instance of a
gate type or delays can be assigned based on layout
parameters. There are several types of delay which could
be modeled, such as transport delay, which is the amount
of time taken for changes in a gate's input to reach the
output, ambiguous delay, which is a short interval in
which a net is undefined, and rise-fall delay, which is the
amount of time a signal takes to change from low to high
and vice-versafl]. For simplicity, our simulators deal
only with transport delay, but could easily be extended to
other delays.

The problem we encountered with compiled multi-delay
simulation is that simple adaptations of unit-delay
techniques have usually been unsuccessful in providing

* This work was supported in part by the National Science
Foundation under grant number MIP-906444 and the USF
Center for Microelectronics Research (CMR).

significant increases in performance. In Section 2 we
describe work that we have done in oblivious multi-delay,
simulation and show why it did not provide the expected
performance improvements. In Section 3 we describe how
we applied the concepts of threaded code[2] to multi-delay
simulation, and why these were also unsuccessful.
Sections 4 and S describe two new techniques that do
provide significant performance improvements. The
results for these two algorithms are presented in Section
6. During this research, we replaced our existing
benchmark machine with a new, faster machine that also
possesses an instruction cache. We discovered that
locality of reference has a profound effect on simulators
run on such machines, much more than we had
anticipated. The algorithm presented in Section 5 was
designed to provide good locality of reference at the
expense of using somewhat slower operations.

2. Oblivious compiled simulation.

In both zero-delay and unit-delay simulation, compiled
oblivious techniques have demonstrated performance
improvements over interpreted event driven simulation, as
long as the activity rate is above a certain threshold. The
reason for this performance improvement is that the
number of instructions executed per gate simulation is
reduced to a minimum. Although oblivious simulatators
usually simulate many more gates than event-driven
simulators, the gate simulations are so efficient that a
performance improvement can be realized.

However, the problem with oblivious techniques is that
they must provide for every eventuality. In zero-delay
simulation, this means simulating every gate for every
input vector. However in unit-delay and multi-delay
simulation this means the simulation of a gate at every
time that an event-driven simulator could schedule the
simulation. Thus if there is a path of delay d between the
primary inputs and gate G, then G must be simulated at
time 4. The number of required simulations depends on
the circuit structure, the the number of different delays,
and the circuit size.

Two oblivious methods of unit-delay simulation that
can be adapted to multi-delay are the PC-Set Method and
the Parallel Technique[4,5]. We concentrated on the PC-
Set Method, because it allowed us to pack several vectors

29th ACM/IEEE Design Automation Conference®

Paper 26.2

0738-100X/92 $3.00 © 1992 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F113938.149555&domain=pdf&date_stamp=1992-07-01

into a single word, thus performing many simulations for
the price of one. Our preliminary studies of the PC-Set
method have suggested that oblivious simulation will not
provide significant speedups over interpretive techniques
for realistic circuits. In our studies, we used the ISCAS85
benchmarks, and assigned a random delay of 1-8 to each
gate. Without vector packing, there was no significant
difference between the performance of the PC-Set method
and our interpreted simulator. Although vector packing
gave a performance improvement of over 90%, similar
improvements could probably be realized with the
interpreted simulator. Furthermore, the size of the
generated code was unacceptably large for many circuits,
almost 50 megabytes for c6288., Experiments with
random delays over a larger range of values have shown
that the size of the generated code expands significantly
with an increase in the number of delays.

Although the Parallel Technique has been shown to be
substantially more efficient than the PC-Set Method, the
it does not permit vector packing, and can probably not
compete with an interpreted simulator using packed
vectors. It seems that the number of gate simulations that
must be performed by an oblivious multi-delay simulator
is so large that little or no performance gains can be
realized, even though the gate simulations can be done
more efficiently than those of an interpreted simulator.
Therefore, we have abandoned the oblivious approach and
concentrated on event-driven techniques.

3. Threaded code techniques.

Lewis has demonstrated that using threaded code in a
compiled unit-delay simulation can provide performance
improvements over interpreted unit-delay simulation[2].
Apart from the distributed scheduler, the technique is
much the same as that used by an interpreted simulator.
Simulation is done in two phases, the event phase which
processes events and produces a queune of gates, and the
simulation phase which simulates gates and produces a
queue of events. Because neither events nor gates are
queued for more than one phase, event generation and
storage is relatively simple, and it is possible to suppress
event generation if a new value produced by a gate
simulation identical to the existing value of the net.

Event-driven multi-delay simulation is also done in two
phases, but because of different gates may have different
delays, events must often remain queued for several
iterations of the event phase. The event phase processes
only those events for the current time. It is not possible
to suppress event generation. If there is already an event
queued for the net, it may change value before the value
produced by the current simulation becomes effective.

Since only the events for the current time are processed
during the event-phase, it is necessary to sort events by
time. The simplest mechanism for doing this is the
timing wheel, which is an array of event queues, each of
which corresponds to a single time. If the number of
queues is less than the total number of times at which

421

events are processed, the queue may be reused by indexing
the array modulo its size.

We have implemented a multi-delay simulator using
threaded-code techniques similar to those used by
Lewis[2]. This simulator provided an improvement of
about 45% over our interpretive simulator. Although this
is a significant improvement, it is less than we had
expected. Subsequent investigations of the interpreted and
compiled algorithms showed that the threaded-code
technique was able to eliminate only a small part of the
code used by the interpreted algorithm, hence the
unexpectedly low performance.

Although multi-delay simulation demands the use of an
event-driven algorithm, our experiments with threaded
code demonstrate that a simple adaptation of an
interpretive algorithm will not provide the significant
performance improvements that we are secking.

4. Gateways for multi-delay simulation.

We have recently investigated a concept called
"gateways” that can be used to introduce event-driven
behavior into oblivious simulations [6]. A gateway is a
retargetable branch instruction that can be used to switch
portions of the generated code into and out of the
instruction stream, Although this concept is not directly
applicable to multi-delay simulation because of the code
size, we have discovered an adaptation of the gateway
technique that can be used to substantially improve the
performance of an event-driven multi-delay simulation. In
the gateway technique, the branch target for a particular
gateway is stored in a fixed location which are
dynamically altered to construct an instruction stream.
The generated code contains a simulation routine for each
gate and a net handler for each net. Each routine is
terminated by a gateway.

The primary difficulty in adapting the gateway technique
to multi-delay simulation is that several events may be
queued for a net at one time, making fixed branch targets
infeasible. To get around this problem, our technique
stores all branch targets in a collection of stacks. The
gateway instructions pop the stack to obtain the address of
the next block of code to be executed. (Lewis used a
similar technique for unit-delay simulation in (2].) Our
current implementation uses n+1 stacks where n is the
number of slots in the timing wheel. The first n stacks
implement the timing wheel, while the n+1st stack is
used to schedule gate simulations.

The timing wheel structure is illustrated in Fig. 1,
along with the structure for the gate-simulation routines.
Pseudo-Code for the net and gate trailer routines is
illustrated in Fig. 2. Gateway operations are represented
by "jump *label” statement. Because this is not legal C,
assembly language must be used to generate this
operation, otherwise, C is generated.

Initially, the primary input tests, illustrated in Fig. 3,
are used to detect changes in the input vector. In Fig. 3,
"index" is the ID of a gate, which is assigned at compile

Paper 26.2

time. The flag is used to avoid switching the simulation
routine into the instruction stream twice.

1
P N [
Trailer Routine Routine
Net Net :
p— a—— Trafler Routine E
e I e w—
—Eé— .
I3 :
I__.N'.l_le gereeesesessepesnananannen
Trafler §....crenee borerreennenns
Gat Gate Gat Gate
He:dir | Ro:tine Ro:li:le Terminator
Simulation Simulation '
Code Code :
Gateway Gateway f §
Fig. 1. The gateway stack structures.

Net_Trailer:
jump *Gate_Header; /* Gateway Operation */

Gate_Trailer:
Restore Gate_Header to ADDRESS_of_Gate_Trailer;
Clear TIMING_WHEEL{current_time]};
if event_count = 0 then
return;
Increment current time by 1;
jump *TIMING_WHEEL{current_time).addr;

Fig. 2. Net and gate trailer routines.

Initially, the top of the simulation stack will cause an
immediate exit. The branch address of the gateway
instruction us used to form a singly linked list of
simulation routines. The link address is conveniently
located in the address field of a branch instruction..

After all input tests have been performed, the
Net_Trailer branches to the first simulation routine in the
stack. The last routine branchs to the gate trailer, which
advances the current time, and jumps indirectly to the top
of the new event stack,

/* index = fanout gate's ID at compiled time; */
if (new_net_k != old_net_k) then
if (flagfindex] = 0) then
old_net_k = new_net_k;
Gateway{index] = Gate_Header;
Gate_Header = ADDRESS_of_Net_k;
endif
endif

Fig. 3. An input test.

Four basic routines are used to simulate a single state at
certain time ¢, the trailer routines illustrated in Fig. 2, and
the gate-simulation and net-handling routines illustrated in
Fig. 4. The trailer routines do the bridge operations
between the net handlers and the gate simulations,

Paper 26.2

422

simulation is performed by the gate-simulation routines,
and scheduling is done by the net handlers.

/* Net handling routine */
Net_k_Handler:
if (new_net_k != old_net_k) then
old_net_k = new_net_k;
if (flag[index] = 0) then
Gateway[index] = Gate_Header;
Gate_Header = Address_of_Gate_Routine;
endif
endif
Decrement event count;
Timing_Wheel[current_time] =
Timing_Wheel[current_time] - Address_Size;
goto *(Timing_Wheel[current_time]);
/* Gate simulation routine */
Gate_index_Simulator:
Reset flag[index];
new_net_k = old_net_x & old_net_y;
Add_Time =(Current_Time + Gate_Delay) MOD
Timing_Wheel_Size;
Timing_Wheel[Add_Time] = Addr. of Net_k_Handler;
Timing_Wheel[Add_Time] =
Timing_Wheel[Add_Time] + Address_Size;
Increment the event-count;
goto *Gateway[index];

Fig. 4.

/* the next stream */
Generated code structure.

S. The shadow technique.

The shadow technique improves performance on
machines with instruction caches, because it generates a
smaller amount of code than the gateway method. All
information for a gate or a net is placed a descriptor called
a shadow . All values are accessed indirectly using the
shadow but, the reduced amount of code increases the
performance of the instruction cache.

Only a minimal number of generic gate and net
processing routines are generated, but a descriptor is
generated for each gate and each net. A gate descriptor has
the address of a simulation routine, a flag to prevent
duplicate scheduling of gates, the gate delay, and pointers
to input and output values. Each net descriptor has the
address of a net handling routine, pointers to old and new
values, and the addresses of fanout gate descriptors. Fig. 5
illustrates these descriptors.

Gate simulators are generated for each combination of
gate-type and input-count in the circuit. Thus if the
circuit contains only two and three-input NANDs, then
two routines will be generated, one for two-input NANDs
and onc for three-input NANDs. Each of these routines
assumes that a register variable called the "Shadow
Pointer" contains the address of the current descriptor.
One net-handler is generated for each different fan-out in
the circuit.

Each of the routines terminates with load of the Shadow
Pointer, and a branch to the routine of the new descriptor.
The net handling routines use a timing-wheel that is
identical to that used by the gateway algorithm, except the
stacks contain descriptor addresses rather than routine

addresses. The gate-simulation stack is also similar to
that used by the gateway algorithm, except that a linked
list of descriptors is used instead of a list of routines.

Next Next
Routine Routine
Address Address

o New Net

ag Value Ptr.

Del Old Net

elay Value Ptr.
Output Net
Descriptor Pointers
Output to
Variable Fanout
Number of Gate
Inputs Descriptors
Pointers
to
Input
Variables

Fig. 5.

As usual, simulation is a two-phase process that
alternates between gate-simulation and net-handling. At
the end of each phase either a termination routine is
executed, which is accessed through its own descriptor.

Net and gate descriptors.

6. Experimental results.

A random delay from 1 to 8 was added to each gate of
the ISCAS-85 benchmarks without regard to type.
Because the same gates were simulated by all simulators,
the range of delays has no effect on the conclusions drawn
in this paper. Tests were run on a SUN 4-1PC with 12
megabytes of memory and a dedicated disk. The values of
Fig. 6 are in seconds of execution time for 5,000 random
vectors. The time required for reading inputs and printing
outputs is excluded. Two interpreted simulators were
designed for the purpose of comparing benchmark
performance, one based on the enhanced two-valued logic
model described below, and one based on a more
conventional 3-valued logic model. The results for these
simulators are reported in Fig. 6 under "2-Interp” and "3-
Interp." The performance improvement percentages are
computed using the results from the 2-valued simulator in
the formula (interp_time - comp_time)/interp_time.

The logic model of our compiled simulators uses an
additional bit to force every gate to be simulated at least
once on the first input vector. The value of each net is
initialized to 2 or 3, which represent values 0 and 1. The
simulation routines set this second bit to zero, producing
a value of either 0 or 1, allowing us to use a simpler
2-valued logic model, and still guarantee that nets are set
to consistent values. It would be a simple matter (0
extend our simulators to 3-valued logic.

The Gateway Algorithm gives an average performance
improvement of 67% running in about 1/3 the time of an
interpreted simulation, while the Shadow Algorithm
gives a performance improvement of 81%, running in
about 1/5 the time of an interpreted simulation.

423

Multi-Delay

Ckt 2-Interp Gateways Shadows 3-Interp
c432 35.9 6.8 6.4 40.9
c499 72.1 12.4 10.3 83.9
¢880 55.9 23.9 13.4 61.8
c1355 196.0 46.5 26.6 273.4
c1908} 219.5 85.8 43.9 248.0
c26701 253.5 114.3 59.9 280.7
¢3540| 467.6 161.6 83.2 523.2
c5315 644.6 288.0 151.8 716.2
c6288112330.1 1677.2 788.7 13850.5
¢7552| 1019.0 484.9 256.3 1122.4
MaxImprov.(%) 86 94

Minlmprov (%) 52 75

Avglmprov.(%) 67 81

Fig. 6. Performance results.

The shadow algorithm executes essentially the same
instructions as the gateway algorithm. On a machine
with no cache, we would expect the gateway algorithm to
perform slightly better than the shadow algorithm. The
performance improvement in Fig. 6 is due entirely to the
instruction cache. Because of the steady advance in the
today's technology, we expect caches to become more
common in the future. Many of today's compiled
simulators do not perform well with caches, because the
generated code is one long sequence of instructions
without loops or branches.

7. Conclusion,

Our experimental results show that the average
performance improvement over interpreted simulation is
67% for the gateway algorithm and 81% for the shadow
algorithm. This research demonstrates the importance of
designing compiled simulators that work well with
instruction caches. The differences between the gateway
and shadow algorithms demonstrate the effect that locality
of reference can have on simulation performance.

References

1. M. Breuer and A. Friedman, Diagnosis & Reliable Design
of Digital Systems, Woodland Hills, CA: Computer
Science Press, 1976.

2. D. Lewis, "A Hierarchical Compiled Code Event-Driven
Logic Simulator,”, TCAD, vol 10, 1991, pp. 726-737.

3. R. Bryant, D. Beatty, K. Brace, K. Cho and T. Sheffler,
"COSMOS: A Compiled Simulator for MOS Circuits”,
DAC- 24 1987, pp. 9-16.

4. P. Maurer and Z. Wang, "Techniques for unit-delay
compiled simulation”, DAC-27, 1990, pp. 480-484.

5. P. Maurer, "Optimization of the Parallel Technique for
Compiled Unit-Delay Simulation," ICCAD-90, 1990,
pp. 70-73.

6. P. Maurer, "Gateways: A Technique for Adding Event-
Driven Behavior To Compiled Unit-Delay Simulations,"
Submitted for Publication.

7. S. Szygenda, et. al, "A Model and Implementation of a
Universal Time Delay Simulator for Large Digital Nets,"
SICC, 1970, pp. 207-216.

Paper 26.2

